• Title/Summary/Keyword: Steel Slag (SS)

Search Result 17, Processing Time 0.019 seconds

An Experimental Study on the Arc Stability Improvement of Underwater Wet Welding with Flux Ingredients (피복성분에 의한 수중용접봉의 아크 안정성 개선에 관한 실험연구)

  • 김복인;노창석;정교헌;김민남
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.73-79
    • /
    • 2001
  • Underwater wet bead-on-plate welds were experimentally performed on 11mm thick SS400 steel plate as base metal by using six different types of flux coated electrodes of 3.2mm diameter. Two kinds of different flux coated wet arc electrodes (UW-1, UW-2) were individually designed flux materials, three kinds of the electrodes (E4301, E4311, E4313) were terrestrial electrodes and the another one (TN20) was an imported underwater wet welding electrode. As results, the individually designed flux coated underwater electrode, UW-2 and TN20 had a good starting and the excellent arc stability compared with other electrodes. No significant difference of bead appearance could be detected, but the slag detachability of TN20 electrodes was relatively undesirable. By rapid cooling rate, the hardness value and the portion of martensite of HAZ were increased, but it was considerably maintain stable for TN20 and UW-2 electrodes. The individually designed flux coated electrode, UW-2 could be used in practice for underwater bead welds.

  • PDF

Effect of Chemical Amendments on Soil Biological Quality in Heavy Metal Contaminated Agricultural Field

  • Kim, Yoo Chul;Hong, Young Kyu;Oh, Se Jin;Oh, Seung Min;Ji, Won Hyun;Yang, Jae E.;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.146-152
    • /
    • 2015
  • Heavy metal pollution has been a critical problem in agricultural field near at the abandoned metal mines and chemical amendments are applied for remediation purpose. However, biological activity can be changed depending on chemical amendments affecting crop productivity. Main purpose of this research was to evaluate biological parameters after applying chemical amendments in heavy metal polluted agricultural field. Result showed that soil respiration (SR) and microbial biomass carbon (MBC) were changed after chemical amendments were applied. Among three different amendments, lime stone (LS), steel slag (SS), and acid mine drainage sludge(AMDS), AMDS had an effect to increase SR in paddy soil. Comparing to control ($93.98-170.33mg\;kg^{-1}day^{-1}$), average of 30% increased SR was observed. In terms of MBC, SS had an increased effect in paddy soil. However, no significant difference of SR and MBC was observed in upland soil after chemical amendment application. Overall, SR can be used as an indicator of heavy metal remediation in paddy soil.

An experimental study on the arc stability improvement of underwater wet welding with flux ingredients (피복성분에 의한 수중용접봉의 아크안정성 개선에 관한 실험연구)

  • 김복인;정교헌;김민남
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.276-281
    • /
    • 2001
  • Wet Underwater arc welding process is inverstigated by using experimentally developed flux coated underwater arc welding electrode and SS400 steel plate of 12mm thickness as base metal. Two kinds of different flux covered wet arc welding electrode of 3.2mm diameter (UW-1, UW-2) are individually developed and one of the improved underwater welding electrode (UW-2) may be put to practical use for underwater arc welding process.

  • PDF

Microcosm Experiment for Evaluating Efficiency of Chemical Amendments on Remediation of Heavy Metal Contaminated Soil

  • Hong, Young Kyu;Oh, Se Jin;Oh, Seung Min;Yang, Jae E.;Ji, Won Hyun;Kim, Sung Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.138-145
    • /
    • 2015
  • Heavy metal pollution in agricultural field near the abandoned metal mines is a critical problem in Korea. General remediation technique is to apply chemical amendments and soil covering. However, there is no specific guidelines for conducting soil covering. Therefore, main objective of this research was to determine optimum soil covering technique with microcosm experiment. Three different chemical amendments, lime stone (LS), steel slag (SS), and acid mine drainage sludge (AMDS), were examined and varied soil covering depth, 20, 30, 40cm, was applied to determine optimum remediation technique. Bioavailable heavy metal concentration in soil and total concentration of heavy metals in crop were monitored. Result showed that average heavy metal concentration in varied soil covering depth was ordered as 40 cm ($14.5mg\;kg^{-1}$) < 20 cm ($14.6mg\;kg^{-1}$) < 30 cm ($16.0mg\;kg^{-1}$) and also heavy metal concentration in crop was ordered as 40 cm ($100{\mu}g\;kg^{-1}$) < 30 cm ($183{\mu}g\;kg^{-1}$) < 20 cm ($190{\mu}g\;kg^{-1}$). In terms of chemical amendments, average heavy metal concentration was decreased as AMDS ($150{\mu}g\;kg^{-1}$) < SS ($151{\mu}g\;kg^{-1}$) < LS ($154{\mu}g\;kg^{-1}$). Overall, depth of soil covering should be over 30 cm to minimize bioaccumulation of heavy metals and SS and LS could be applied in heavy metal contaminated soil for remediation purposes.

Efficiency of Chemical Amendments for Reducing Ecotoxicity in Heavy Metal Polluted Agricultural Fields

  • Choi, Won-Suk;Kim, Dae-Bok;Hong, Young-Kyu;Kim, Soon-Oh;Lee, Sang-Woo;Lee, Byung-Tae;Lee, Sang-Hwan;Park, Mi-Jung;Kim, Sung-Chul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.75-80
    • /
    • 2016
  • This study was conducted to evaluate effect of chemical amendments on reducing bioavailable fraction of heavy metals in soil along with ecotoxicological effect on earthworms, Eisenia fetida. Three different chemical amendments, lime (L), steel slag (SS), and acid mine drainage sludge (AMDS), were applied with varied application ratio (1, 3, 5%). Heavy metal contaminated soil was mixed with chemical amedments and earthworms, Eisenia fetida, were cultivated for 28 days. Bioavailable fraction of heavy metals (Cd, Cu, Pb, and Zn) extracted with 0.1N HCl was monitored and also, mortality, growth, and metal concentration in earthworm were assessed. Result showed that all three amendments had high efficiency to reduce bioavailable fraction of heavy metals in soil. In particular, lime showed the highest reduction rate of Cu (63.9-87.7%), Pb (7.90-24.65%), and Zn (40.83-77.60%) among three amendments. No mortality of earthworm was observed during experimental period except 3% and 5% AMDS treatment indicating that application of chemical amendments is safe in terms of ecotoxicological aspect. However, no positive correlation was observed between reduction of bioavaialble fraction of heavy metals in soil and earthworms. Overall, application of chemical amendments in agricultural field can be adapted for reducing bioavailable fraction of heavy metals and detoxification in soil.

Effects of Industrial By-products on Reducing Heavy Metal Leaching in Contaminated Paddy Soil

  • Oh, Se Jin;Oh, Seung Min;Kim, Sung Chul;Ok, Yong Sik;Ko, Tae Yol;Ji, Won Hyun;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.64-71
    • /
    • 2015
  • Soil contamination with arsenic and heavy metals is a worldwide problem. Main objective of this research was to evaluated effects of reducing heavy metal leaching under reduced soil condition amended with industrial by-products. The contaminated soil was amended with 3% (w/w) of limestone (Ls), steel slag (SS) and acid mine drainage sludge (AMDS). Synthetic acid rain ($H_2SO_4:HNO_3=6:4$, pH 5.5 fixed) was used for feeding solution with flow rate of $0.78{\sim}0.88mL\;min^{-1}$. Results showed that similar pH and EC of leachate was observed in all treatments regardless of applied industrial by-products. However, arsenic concentration of leachate increased when industrial by-products were mixed. Meanwhile, concentration of heavy metal in the leachate decreased from 11.3 to 4.59 mg for Cd, from 92.3 to 7.93 mg for Pb, and from 11,716 to 1,788 mg for Zn via immobilization in soil with AMDS amended, respectively. Overall, application of industrial by-products can be an environmentally-friendly way to remediate soil and(or) leachate contaminated with metal(loid)s in metal mine site.

Effects of Amendments on Heavy Metal Uptake by Leafy, Root, Fruit Vegetables in Alkali Upland Soil (염기성 밭 토양에서 안정화제에 의한 엽채류, 근채류, 과채류 작물들의 중금속 전이 특성)

  • Kim, Min-Suk;Min, Hyun-Gi;Lee, Sang-Hwan;Kim, Jeong-Gyu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • Various types of amendments have been studied for heavy metal stabilization in soil. However, researches on the effect of amendments on alkali soil and their effects on the plants at various edible parts are insufficient. The aim of this study was to evaluate the stabilization efficiency of heavy metals and their transfer into edible parts of food crops. Abandoned mine area was selected and 3 types of amendments (lime stone, LS; steel slag, SS; acid mine drainage sludge, AMDS) was applied with 3% (w/w). in field. After 6 month aging, Chinese cabbage (leafy), bok choy (leafy), garlic (root) and red pepper (fruit) were transplanted and cultivated. For chemical assessment, total concentration and bioavailability using Mehlich-3 solution were determined. For biological assessment, fresh weight and heavy metal uptakes were analyzed. It was revealed that AMDS reduced bioavailability most effectively, resulting in the decrease in heavy metal concentration in edible parts of all crops. When explaining the heavy metal uptake of plants, the bioavailability was more appropriate than the total contents of soil heavy metals. Therefore, bioavailability-based further research and management practices should be carried out continuously for the sustainable environment management, safe crop production, and human health risk reduction.