• 제목/요약/키워드: Steel Rolling

검색결과 563건 처리시간 0.029초

초고탄소강의 제어압연에 의한 세멘타이트의 구상화와 냉각중 마르텐사이트의 핵발생과 성장의 현상론적 고찰 (Study on the Spheroidization of Cementite by Controlled-Rolling and Martensitic Nucleation and its Growth during Cooling in Ultra High Carbon Steel)

  • 최종술;윤진국
    • 열처리공학회지
    • /
    • 제6권2호
    • /
    • pp.98-106
    • /
    • 1993
  • Ultra high carbon steel (Fe-1.4%C) was prepared by means of a high frequency induction furnace. The preferred nucleation site of martensite was observed. The changes of hardness and impact thoughness due to tempering temperatures, and the spheroidization of cementite by controlled -rolling were also studied for the steel. The preferred nucleation site of martensite in the ultra high carbon steel is prior austenite grain boundary. The hardness of the steel is slightly increased up to about $300^{\circ}C$, and then decreased with further tempering temperature. However, the impact energy keeps a almost constant value, independent of the tempering temperature. The spheroidization of cementite is accelerated as the reduction in thickness per rolling pass is increased and the number of the rolling passes becomes greater.

  • PDF

An Approximate Model for Predicting Roll Force in Rod Rolling

  • Lee, Youngseog;Kim, Hong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.501-511
    • /
    • 2002
  • This paper presents a study of the effect of rolling temperature, roll gap (pass height), initial specimen size and steel grades of specimens on the roll force in round-oval-round pass sequence by applying approximate method and verifications through single stand pilot rod rolling tests. The results show that the predicted roll forces are in good agreement with the experimentally measured ones. The approximate model is independent of the change of roll gap, specimen size and temperature. Thus, the generality of the prediction methodology employed in the approximate model is proven. This study also demonstrates that Shida's constitutive equation employed in the approximate model needs to be corrected somehow to be applicable for the medium and high carbon steels in a lower temperature interval (700∼900$\^{C}$).

A Study on Rolling Mill Dynamics Model and Automatic Gauge Control System

  • Kim, Tae-Young;Kwon, Dae-Hyun;Choi, Won-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.120-125
    • /
    • 2004
  • In the rolling of steel or non-steel metal the most important quality aspect are thickness and flatness. In thickness, there are two important factors. One of them is getting close with accurate goal, nominal gauge, the other is minimize gauge bandwidth, the variation in gauge. In this thesis, we proposed the fuzzy model AGC to minimize gauge variation along the length, developed the rolling mill dynamic model using the math mode of the rolling mill process and the rolling model related with the variety character of the rolling material. We compared the gauge control efficiency of fuzzy model AGC and PI mass flow AGC. We have got a simulation result, that the exit gauge variation of PI mass flow AGC was 2 micron and fuzzy model AGC was 1.2 micron at 1200mpm of rolling speed when each controller was rolling 5 micron of material that is the entry gauge variation.

  • PDF

On-line 학습 신경회로망을 이용한 열간 압연하중 예측 (Prediction for Rolling Force in Hot-rolling Mill Using On-line learning Neural Network)

  • 손준식;이덕만;김일수;최승갑
    • 한국공작기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.52-57
    • /
    • 2005
  • In the foe of global competition, the requirements for the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties) have imposed a mai or change on steel manufacturing industries. Indeed, one of the keys to achieve this goal is the automation of the steel-making process using AI(Artificial Intelligence) techniques. The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved. In this paper, an on-line training neural network for both long-term teaming and short-term teaming was developed in order to improve the prediction of rolling force in hot rolling mill. This analysis shows that the predicted rolling force is very closed to the actual rolling force, and the thickness error of the strip is considerably reduced.

후판 선후단에서의 비정상변형부 폭제어기술 (Width Control of the Top and Bottom Ends of Steel Plate by Using Short-Stroke edging in Plate Mill)

  • 정대섭;남구원;천명식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.429-437
    • /
    • 1999
  • Width variation of the top and bottom ends of steel at finishing rolling in a plate, has been investigated. It was found that width variation after finishing rolling is affected by edging, broadside rolling ratio, longitudinal rolling ratio, width shape after broadside rolling, temperature, width-to-thickness ratio, and so on. A neural network modelling of back propagation has been conducted on the width variation during rolling. Based on these prediction models, a width control system, by which the roll opening and closing of the hydraulic AWC edger can be adjusted during edge rolling in finishing rolling passes, has been developed. Compared to conventional width model, the neural network model is much accurate in a model. The width control system is applied to a newly built production mill.

  • PDF

Roughness and micro pit defects on surface of SUS 430 stainless steel strip in cold rolling process

  • Li, Changsheng;Zhu, Tao;Fu, Bo;Li, Youyuan
    • Advances in materials Research
    • /
    • 제4권4호
    • /
    • pp.215-226
    • /
    • 2015
  • Experiment on roughness and micro pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The relation between roughness and glossiness with reduction in height, roll surface roughness, emulsion parameters was analyzed. The surface morphology of micro pit defects was observed by SEM, and the effects of micro pit defects on rolling reduction, roll surface roughness, emulsion parameters, lubrication oil in deformation zone and work roll diameter were discussed. With the increasing of reduction ratio strip surface roughness Ra(s), Rp(s) and Rv(s) were decreasing along rolling and width direction, the drop value in rolling direction was faster than that in width direction. The roughness and glossiness were obtained under emulsion concentration 3% and 6%, temperature $55^{\circ}C$ and $63^{\circ}C$, roll surface roughness $Ra(r)=0.5{\mu}m$, $Ra(r)=0.7{\mu}m$ and $Ra(r)=1.0{\mu}m$. The glossiness was declined rapidly when the micro defects ratio was above 23%. With the pass number increasing, the micro pit defects were reduced, uneven peak was decreased and gently along rolling direction. The micro pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. When work roll diameter was small, bite angle was increasing, lubrication oil in micro pit of deformation zone was decreased, micro defects were decreased, and glossiness value on the surface of strip was increased.

저탄소강 선재 압연의 주름성 결함 (Wrinkle Defect of Low Carbon Steel in Wire Rod Rolling)

  • 김학영;권혁철;변상민;박해두;임용택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.307-316
    • /
    • 2004
  • This study examined the cause of the wrinkle defect which is frequently encountered in wire rod rolling of low carbon steel$(C0.08\~0.13wt.\%)$. Even a small defect on the surface of rolled bars can easily develop into fatal cracks during cold heading process of low carbon steel, and it is therefore necessary to minimize inherent defects on the surface of hot rolled bars. Hot rolling process of low carbon steel was analyzed to identify the cause of the wrinkle defect in conjunction with FE analysis. The integrated analysis revealed that the wrinkle defect initiated in the first stage of rolling, and it was at the billet edge where severe deformation and drastic temperature drop were present. To elucidate the micro-mechanical mechanism of the wrinkle defect, hot compression tests were carried out at various temperatures and strain rates using Gleeble-3800. The surface profile of the each other compressed specimens was compared, and rough surface lines were observed at relatively low temperatures. Those surface defects can develop into wrinkles during multi-pass rolling. To control the wrinkle defect in rolling, it is necessary to design an adequate caliber which can minimize the loss of ductility, and thereby prevent flow localization. To use the result of this study fur other steels, the quantitative measure of the wrinkle defect and flow localization parameter should be proposed.

  • PDF

고강도강의 냉간 조질 압연 시 호일 압연이론을 이용한 압연하중의 예측 (Roll Force Prediction of High-Strength Steel Using Foil Rolling Theory in Cold Skin Pass Rolling)

  • 송길호;정제숙
    • 대한기계학회논문집A
    • /
    • 제37권2호
    • /
    • pp.271-277
    • /
    • 2013
  • 냉간압연 및 소둔공정에서의 조질압연 과정은 강종별로 적정 연신율을 부여함으로서 프레스 가공시 항복점 연신 현상을 제거해주는 중요한 공정이다. 적정 연신율 확보를 위해서는 강종별, 사이즈별 정확한 압연하중 예측이 필수이다. 열간 및 냉간압연과는 달리 조질압연에서는 2%이내의 연신율을 부과하는 공정이므로 압연하중 작용 시 롤 바이트 내 에서의 롤의 탄성변형 거동이 복잡하여 정확한 압연하중을 예측하기가 어려워 예측모델이 정립되어 있지 않다. 그럼에도 불구하고 최근 인장강도 590MPa 급 이상의 자동차용 고강도강 개발이 가속화 됨에 따라 조질압연시 정확한 압연하중의 예측은 더욱더 중요하게 되었다. 따라서 본 연구에서는 조질 압연 시 롤 바이트 내에서 롤의 변형거동이 유사하다고 알려져 있는 호일(foil)압연 이론 식을 이용해 조질 압연 시 전체 생산 강종을 대상으로 압연하중 예측 가능성에 대해 검토하였다. 그 결과 인장강도 350MPa 이상 980MPa 이하의 강종에 대해서는 non circular model 이 circular 모델보다 압연하중 예측 정도가 우수하며, 이 영역에서 압연하중 예측 모델로의 적용이 가능함을 확인하였다.

강판의 압연 방향과 인장하중 방향의 상대 각도에 따른 피로 균열 진전 특성 (Characteristics of fatigue crack propagations with respect to the angles between rolling and tensile loading directions of steel plates)

  • 이용복;오병덕
    • 한국공작기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.74-80
    • /
    • 2005
  • Steel plates used for common structures are manufactured by rolling processes in general. The rolling direction traces generated during the processes have significant influences on mechanical properties and fatigue behavior of the plates. The objective of present study is to investigate those directional characteristics for the enhancement of steel structure safety. SS400 steel plates of 3 mm thickness are tested in this study, When the angles between the tensile loading direction and the rolling direction of the plates are increased, their yield strengths are increased and elongations are rather decreased. It is also shown that fatigue crack growth rates in the plates can be increased according to the changes of those mechanical characteristics. For the safety of the structures, therefore, it is critical to decrease the angles between the rolling direction and the tensile loading direction.

방향 선택형 에지검출 알고리즘 기반의 RM존 캠버 모니터링 시스템 (A Camber Monitoring System of RM Zone based on Direction Selective Edge Detection Algorithm)

  • 김현수;최용준
    • 제어로봇시스템학회논문지
    • /
    • 제21권8호
    • /
    • pp.713-717
    • /
    • 2015
  • In this paper, we propose camber monitoring system which is using on hot rolling process. In roughing mill which is one of the rolling part in hot rolling process, steel plate can be bended in width direction under the imbalance of rolling condition. This bending of steel plate in width direction is called as camber. In order to measure the camber, first, cameras which are installed over transport pathway of steel plate take pictures of whole shape of steel plate. And location value of steel plate edge is extrated from these pictures by edge detection algorithm. But, there are a lot of noises which are generated by such as water sprays, dusts, peripheral equipments in these pictures, and these noises make edge detection difficult. In order to solve this kind of problem, we developed a direction selective edge detection algorithm, and applicated in our camber monitoring system. As a result, we got stable results in spite of process noises.