• 제목/요약/키워드: Steel Rolling

검색결과 563건 처리시간 0.029초

유성압연기를 사용한 스테인리스 강관 압연공정의 유한요소해석 (FEA of Pipe Rolling Process Using Planetary Rolling Mill for Stainless Steel)

  • 이정길;김관우;조해용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.244-251
    • /
    • 2011
  • 유한요소법을 통하여 유성압연기에 의한 스테인리스 강관 압연공정을 연구하였다. 3개의 롤에 의한 만네스만 공법을 압연공정에 적용하였다. 보통 유성압연은 냉간가공으로 시작하여 열간가공으로 종료되며, 기존의 압출공정에 비해 공정단축과 생산비절감의 장점을 갖고 있다. 압연공정은 다양하고 복합적인 공정변수를 가지고 있으며, 각각의 변수들은 성형결과에 영향을 미친다. 따라서 유성압연의 다양한 공정변수가 해석에 고려되어야 한다. 본 연구에서는 스테인리스 강관성형의 가능성과 생산성을 검토하였고, 소재예열 및 자전속도, 제품두께 변화를 해석에 반영하였다. 스테인리스 강관 압연공정은 성공적으로 시뮬레이션 되었고 최적의 압연조건을 결정하는데 유용할 것이다.

CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계 (Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE)

  • 이형욱;윤덕재;이근안;최석우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF

표면 Rolling시 작업조건이 표면조도에 미치는 영향 (Study on the effect of the surface rolling condition to the surface roughness)

  • 강명순;김희남
    • 오토저널
    • /
    • 제8권3호
    • /
    • pp.68-76
    • /
    • 1986
  • The surface rolling method which is one of the plastic deformation processes increases the surface roughness and hardness of materials. In this study, three NACHI6000 ZZ bearing were used for surface rolling tool on the mild steel and high carbon steel. The purpose of this study is to investigate the effects of rolling speed, feed rate and contact pressure on the surface roughness. The following results have been obtained with the mild steel and high carbon steel. 1. The roller finishing method has increased surface roughness from 2.4 .mu.m Ra at initial ground surface to 0.17 .mu.m Ra-0.4 .mu.m Ra. 2. The contact pressure has influenced greatly on the surface roughness. There is an optimal contact pressure. 3. As the rolling speed and the feed rate decrease, the surface roughness improves. 4. The optimal contact pressure for the good surface roughness of SS40 and STC 3 has been at 213 Kgf/Cm$^{2}$ and 220 Kgf/Cm$^{2}$ respectively.

  • PDF

롤갭 시뮬레이터의 개발과 패스스케쥴 개선 (Development of Rollgap Simulator and Its Application to Draft Schedule Adjustment)

  • 안재환;이영호;이인우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.163-172
    • /
    • 2004
  • A fast, accurate model for calculating roll gap variables are critical to the implementation of computer based automation systems for cold rolling mills. Based on the work of Fleck and Johnson, rollgap simulator with non-circular arc model was developed using the influence function. This developed model is capable of predicting values of force, torque and slip which can be applied over the wide range of rolling conditions including cold rolling/DR/temper mill with high execution speed. Friction coefficient was obtained as a function of operation conditions through analyzing measured data. After combination of rollgap simulator with production strategy, draft schedule for No.3 RCM (Reversible Cold Rolling Mill) in Incheon works of Dongbu Steel was developed. This draft schedule will be installed in the setup computer of No.3 RCM replacing old Hitachi model.

  • PDF

맞대기 용접 강판재에서 압연 및 잔류응력에 의한 피로거동 (Fatigue Behavior with Respect to Rolling and Residual Stress in Butt-welded Steel Plate)

  • 이용복;오병덕;김성엽
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.826-832
    • /
    • 2006
  • For the improvement of safety and endurance in welded steel structure, it is needed to consider welding residual stress distribution and rolling directional characteristics of materials. In this study, it was investigated experimentally about characteristics of fatigue crack propagation according to welding residual stress and rolling in FCAW(flux cored arc welding) butt-jointed steel plates. SS400 steel plates of 3mm thickness were selected and tested for this study. When the angles between tensile loading direction and rolling direction in welded materials are increased from $0^{\circ}\;to\;90^{\circ}$, their fatigue crack propagation rates are increased. These results are same as predicted increments of fatigue crack propagation rate when stress ratio is increased from 0 to 0.5. When the angles of rolling direction and welding direction to tensile loading direction are $0^{\circ}\;and\;90^{\circ}$ respectively, fatigue crack propagation rate in welded material is lowest.

고온압연공정에서 강종 및 감면율 변화에 따른 마찰계수 변화 분석 (Analysis of Friction Coefficient Dependent on Variation of Steel Grade and Reduction Ratio in High Temperature Rolling Process)

  • 허종욱;이형직;나두현;이영석
    • 소성∙가공
    • /
    • 제18권5호
    • /
    • pp.410-415
    • /
    • 2009
  • Experimental and numerical studies were performed to examine the effect of material temperature and reduction ratio on friction coefficient during hot flat rolling. We carried out a single pass pilot hot flat rolling test at the temperatures range of $900{\sim}1200^{\circ}C$ and measured the spread of deformed material while reduction ratio varied from 20% to 40%. Materials used in this study were a high carbon steel and two alloy steels. The dimension of specimen used in hot rolling experiment was $50mm{\times}50mm{\times}300mm$. We performed a series of finite element simulation of the hot rolling process to compute the friction coefficient change in terms of steel grade and reduction ratio. Results showed that temperature dependency of friction coefficient is not noteworthy but the effect of reduction ratio on friction coefficient is quite large. For high carbon steel, friction coefficient at reduction ratio of 30% is lower than that at that of 20%. Meanwhile friction coefficient at reduction ratio of 40% was one and half times large compared with that at that of 20%. The effect of steel grade on friction coefficient was significant when reduction ration was large, e.g., 40%.

Set-Up model for the silicon steel cold rolling mill

  • Kim, Sang-Kyun;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1323-1326
    • /
    • 2003
  • In this paper, we propose set-up model of silicon steel cold rolling mill. Until now, the working of Silicon Steel is operated using the look-up table value of roll force which a field operator finds by making good use of his experience. Therefore, the standardization of data and an improvement of the quality on product are very difficult. So we establish neural model using field data of various kinds of coil at each pass.

  • PDF

Rolling Contact Fatigue Property of Sintered and Carburized Compacts Made of Molybdenum Hybrid-alloyed Steel Powder

  • Unami, Shigeru;Ozaki, Yukiko;Uenosono, Satoshi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.144-145
    • /
    • 2006
  • A developed molybdenum hybrid-alloyed steel powder is based on a molybdenum prealloyed steel powder to which molybdenum powder particles are diffusion bonded. The sintered compact made of this powder has a finer pore structure than that of the conventional molybdenum prealloyed steel powder, because the ferritic iron phase $({\alpha}-phase)$ with a high diffusion coefficient is formed in the sintering necks where molybdenum is concentrated resulting in enhanced sintering. The rolling contact fatigue strength of the sintered and carburized compacts made of this powder improved by a factor of 3.6 compared with that of the conventional powder due to the fine pore structures.

  • PDF

비대칭 압연한 강판의 GOSS 방위 발달에 미치는 초기 집합조직의 영향 (Effect of Initial Texture on the Development of Goss Orientation of Asymmetrically Rolled Steel Sheets)

  • 이철우;정효태;이동녕;김인수
    • 소성∙가공
    • /
    • 제29권1호
    • /
    • pp.27-36
    • /
    • 2020
  • The Goss texture component of {110}<001> is well known as one of the best texture components to improve the magnetic properties of electrical steel sheets. The small amount of the Goss texture component is obtained at the surface of the steel sheet by shear deformation due to friction between the steel sheet and the roll during conventional symmetric rolling. This study aims to identify a method to obtain high intensity of the Goss texture component not only at the surface but in the whole layer of the steel sheet by shear deformation of asymmetric rolling. Low carbon steel sheets, which have different initial texture, were asymmetrically rolled by about 50%, 70%, and 80%. The pole figures of the top, center, and bottom layers of the initial and asymmetrically rolled low carbon steel sheets were measured by an X-ray diffractometer. Based on the measured pole figures of these samples, the intensities of the main texture components were analyzed for the initial and asymmetrically rolled low carbon steel sheets. As a result, the initial low carbon steel sheet with the γ-fiber component showed a higher intensity of the Goss texture component in the whole layer than the steel sheet with other texture components after asymmetric rolling.

고속도강 선.봉재의 중심부 용융현상방지를 위한 압연공정 해석 (Analysis of Wire/Bar Rolling Process of High Speed Steel for Prevention of Center Fusion)

  • 이수연;정효태;하태권;정재영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.318-321
    • /
    • 2007
  • The temperature distribution of high speed tool steel wire/bar during high speed hot rolling procedures has been studied in this study. The tool steels wire/bar show severe temperature gradient during rolling procedures and the temperature of center part much higher than that of the surface. This temperature gradient accumulated after every rolling procedure and the center of rolled wire/bar could be remelt in a certain stage to cause inside defects. In the present study, the temperature distribution was simulated using finite element method and the processing parameters such as rolling speed, cooling condition, has been discussed to prevent the temperature increases of center wire/bar.

  • PDF