• Title/Summary/Keyword: Steel Reinforcement Bar

Search Result 231, Processing Time 0.024 seconds

A study on the bending strength characteristics of steel bar and GFRP rebar in salt water surroundings (해수 환경에서의 철근과 GFRP 리바의 굽힘 강도 특성에 관한 연구)

  • Han, Gil-Young;Lee, Dong-Gi;Kwak, Sang-Muk;Bae, Si-Yon;Kim, Ki-Sung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.354-358
    • /
    • 2002
  • This paper describes the need for a ductile Fiber Reinforced Plastics (FRP) reinforcement for concrete structures. To promte the degradation of the adhesive condition at the fiber/matrix micro interface without matrix dissolution loss were carried out in salt water surrounding. The absorption properties and the bending strength were compared about GFRP rebar and steel bar.

  • PDF

Structural performance evaluation of precast concrete segment using synthetic fibres (프리캐스트 콘크리트 세그먼트의 합성섬유 보강재 적용에 따른 구조적 성능 평가)

  • Lee, Hoseong;Kim, Changyong;Lee, Sean S.;Kim, Seungjun;Lee, Kyeongjin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.469-483
    • /
    • 2018
  • Steel bars have been widely used as the primary reinforcement for Precast Segmental Concrete Lining for TBM Tunnels. Previously, studies have been carried out to gauge the potential for steel fiber reinforcement to replace the use of steel bar reinforcements in the segmental lining to reduce the amount of the steel bar reinforcement. Steel fiber reinforcements have been investigated and widely applied to SFRC TBM linings to improve the constructability of SFRC TBM linings worldwide. However, the steel fiber reinforcement often caused punctures to the water membranes inside tunnel lining and had long-term durability deterioration issues caused by steel corrosion, as well as cosmetic problems. Therefore, this paper sought to gauge the potential of synthetic fiber reinforcements, which have proven to be very attractive substitutes for steel fiber reinforcements. This study analyzed the performance of both steel and synthetic fiber reinforcements in segmental linings and evaluated the applicability of the fiber reinforcements to the TBM Precast Concrete Segmental Linings of TBM tunnels. As a conclusion, this study demonstrates that the potential use of steel and synthetic fibers in various combination, can substitute the rebar reinforcement in the concrete mix for segmental concrete linings.

Material Properties of Structural Steel used in Modern Historical Heritage of Busan and Gyeongsang in the 1930-1940s (1930-40년대 부산·경상지역의 근대 역사문화유산에 사용된 강재의 재료적 특성)

  • Ahn, Jae-Cheol;Song, Jong-Mok
    • Journal of architectural history
    • /
    • v.23 no.6
    • /
    • pp.39-46
    • /
    • 2014
  • In this study, we evaluated the chemical and physical properties of structural steel, which is the most basic material for steel structures and reinforcement concrete structures in modern period. We theorized the technical data for the research of technical history of modern heritage structures by analyzing the product system and its quality control of structural steel used in modern historical heritages. The results of this study are as follow; first, the rounded bars were used in most of modern heritage structures. But in the case of Waegwan railroad bridge, the deformed bars were used in spit of not using in Japan after the great earthquake of Kantou. Second, the structural steel was good in terms of quality control, but It has brittle properties because it was not manufactured by heat treatment process.

Shear Behavior of Concrete Beams Reinforced with FRP Bar (FRP Bar 보강 콘크리트 보의 전단거동)

  • Choi, Ik-Chang;Jung, Dae-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.4
    • /
    • pp.403-409
    • /
    • 2013
  • Shear behavior of concrete beams reinforced with steel and/or FRP bar is studied through experimental tests. Experimental parameters includes the mechanical properties of reinforcements in shear and bending, and the ratio of shear reinforcement. The validity of the modified truss analogy, that has been widely accepted as a basis for the practical shear design of concrete beams, has been examined thoroughly by analyzing experimental results. The experimental results indicate that the modified truss analogy cannot be directly adopted to the shear problem of concrete beams reinforced with FRP bar.

An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Concrete Slab (강섬유보강 철근콘크리트 슬래브의 휨 거동에 관한 실험적 연구)

  • 박홍용;문정규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.861-866
    • /
    • 2000
  • This experimental were investigated on the influence of steel fiber reinforcement on flexural behavior characteristics of slabs with various steel fiber contents $V_f$ and aspect ratio($\ell $/$\phi$). Deflection, crack widths, and strains of steel bar were measured with every load step. In the results of this experimental, the addition of steel fibers to conventionally reinforced concrete slab increased the ultimate load, reduced the creak width, the average crack spacing, and deflection.

New emerging surface treatment of GFRP Hybrid bar for stronger durability of concrete structures

  • Park, Cheolwoo;Park, Younghwan;Kim, Seungwon;Ju, Minkwan
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.593-610
    • /
    • 2016
  • In this study, an innovative and smart glass fiber-reinforced polymer (GFRP) hybrid bar was developed for stronger durability of concrete structures. As comparing with the conventional GFRP bar, the smart GFRP Hybrid bar can promise to enhance the modulus of elasticity so that it makes the cracking reduced than the case when the conventional GFRP bar is used. Besides, the GFRP Hybrid bar can effectively resist the corrosion of conventional steel bar by the GFRP outer surface on the steel bar. In order to verify the bond performance of the GFRP hybrid bar for structural reinforcement, uniaxial pull-out test was conducted. The variables were the bar diameter and the number of strands and pitch of the fiber ribs. Tensile tests showed a excellent increase in the modulus of elasticity, 152.1 GPa, as compared to that of the pure GFRP bar (50 GPa). The stress-strain curve was bi-linear, so that the ductile performance could be obtained. For the bond test, the entire GFRP hybrid bar test specimens failed in concrete splitting due to higher shear strength resulting in concrete crushing as a function of bar deformation. Investigation revealed that an increase in the number of strands of fiber ribs enhanced the bond strength, and the pitch guaranteed the bond strength of 19.1 mm diameter hybrid bar with 15.9 mm diameter of core section of deformed steel the ACI 440 1R-15 equation is regarded as more suitable for predicting the bond strength of GFRP hybrid bars, whereas the CSA S806-12 prediction is considered too conservative and is largely influenced by the bar diameter. For further study, various geometrical and material properties such as concrete cover, cross-sectional ratio, and surface treatment should be considered.

Behavior of Reinforcement Ratio on Concrete Beams Reinforced with Lab Spliced GFRP Bar (GFRP 보강근으로 겹이음된 콘크리트 보의 보강비에 따른 거동특성)

  • Choi, Yun Cheul;Park, Keum Sung;Choi, Hyun Ki;Choi, Chang Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.67-76
    • /
    • 2011
  • The use of glass-fiber-reinforced polymer (GFRP) bars in reinforced concrete (RC) structures has emerged as an alternative to traditional RC due to the corrosion of steel in aggressive environments. Although the number of analytical and experimental studies on RC beams with GFRP reinforcement has increased in recent decades, it is still lower than the number of such studies related to steel RC structures. This paper presents the experimental moment deflection relations of GFRP reinforced beam which are spliced. Test variables were different reinforcement ratio and cover thickness of GFRP rebars. Seven concrete beams reinforced with steel GFRP re-Bars were tested. All the specimens had a span of 4000mm, provided with 12.7mm nominal diameter steel and GFRP rebars. All test specimens were tested under 2-point loads so that the spliced region be subject to constant moment. The experimental results show that the ultimate moment capacity of beam increasing of the reinforcement ratio. Failure mode of these specimens was sensitively vary according to the reinforcement ratio. The change of beam effective depth, which was caused by cover thickness variation, controlled the maximum strength and deflection because of cover spalling in tension face.

A Study on the Improvement of Erection Bar Detailing in Domestic Building Construction (국내 건축물 조립용 철근 배근현황 및 개선방안에 관한 연구)

  • Jung, Hyeon-Ok;Cho, Hun-Hee;Park, U-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.39-46
    • /
    • 2009
  • The erection bar is defined as the assistant bar used to fix the position of the reinforcing steel as the reinforcing steel is placed on site. As the erection bar do not bear the structural load and is not showed in the structural drawings, it is not managed importantly. But as chair bars in mat footing is used in large quantities to support the upper main bars, the detailing standards need to be suggested. and some erection bar is placed by experience of the fabricator and placer. Therefore, in this study, a survey about the erection bars was conducted to the reinforcement detailer, the fabricator and placer of domestic construction industry. 11 placing drawings is analyzed to find out the problems of detailing and the quantities of the erection bars. According to the analysis of the survey, the erection bar details in placing drawings were not standardized, and some erection bars are omitted in placing drawings. The improvement in the erection bar detailing was sought by analyzing the results of the survey.

Shear Deformation Characteristics of Concrete Beams Strengthened with Steel/FRP Bar (철근 및 FRP Bar 콘크리트보의 전단변형 특성)

  • Shin, Geun-Ok;Rhee, Chang-Shin;Kim, Dae-Joong;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.277-280
    • /
    • 2006
  • This paper deals with the shear deformation charateristics of concrete beams strengthened with steel/FRP Bar. Applying the shear behavioral model based on shear deformation compatibility to RC beams tested by Ahmed K. El-Sayed et al.(2006), their transverse deformation in the web are calculated at ultimated loads after decoupling the shear carried by arch action in each beams. The calculated transverse deformation at ultimated loads are nearly same for the different reinforcement ratio. From these results, the temporary transverse deformation limit criterion is deduced. Using the proposed temporary limit criterion, the shear strength of concrete beams strengthen with FRP Bar tested by Ahmed K. El-Sayed et al.(2006) is predicted. These predicted values are compared with the measured values and the results are also compared with the current ACI and JSCE equation. The proposed method predicts the ultimate shear capacities more accurately than the equation of ACI and JSCE code. The predictions by the ACI and JSCE code are founded to be very conservative.

  • PDF

Confining Effect of Mortar-filled Steel Pipe Splice

  • Kim, Hyong-Kee
    • Architectural research
    • /
    • v.10 no.2
    • /
    • pp.27-35
    • /
    • 2008
  • Because of several advantages of mortar-filled sleeve splice in reinforced concrete buildings, this method is being applied increasingly at construction sites and various methods of the splice have been developed in Korea and other countries. In order to apply this system in the field, studies on mortar-filled sleeve splice have been mainly experimental research focused on overall structural performance. However, for understanding the structural characteristics of this splice more accurately, we need to study the confining effect of sleeve, which is known to affect bond strength between filling mortar and reinforcing bar, the most important structural elements of the bar splice. Thus, in order to examine the confinement effect of mortar-filled steel pipe sleeve splice, the present study prepared actual-size specimens of steel pipe sleeve splice, and conducted a loading. Using the test results, we analyzed how the confining effect of steel pipe sleeve affects the bond strength of this splice and obtained data for developing more reasonable methods of designing the splice of reinforcement.