• Title/Summary/Keyword: Steel Production

Search Result 833, Processing Time 0.039 seconds

Comparative energy content and amino acid digestibility of barley obtained from diverse sources fed to growing pigs

  • Wang, Hong Liang;Shi, Meng;Xu, Xiao;Ma, Xiao Kang;Liu, Ling;Piao, Xiang Shu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.999-1005
    • /
    • 2017
  • Objective: Two experiments were conducted to determine the content of digestible energy (DE) and metabolizable energy (ME) as well as the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AA) in barley grains obtained from Australia, France or Canada. Methods: In Exp. 1, 18 growing barrows ($Duroc{\times}Landrace{\times}Yorkshire$; $31.5{\pm}3.2kg$) were individually placed in stainless-steel metabolism crates ($1.4{\times}0.7{\times}0.6m$) and randomly allotted to 1 of 3 test diets. In Exp. 2, eight crossbred pigs ($30.9{\pm}1.8kg$) were allotted to a replicate $3{\times}4$ Youden Square designed experiment with three periods and four diets. Two pigs received each diet during each test period. The diets included one nitrogen-free diet and three test diets. Results: The relative amounts of gross energy (GE), CP, and all AA in the Canadian barley were higher than those in Australian and French barley while higher concentrations of neutral detergent fiber, acid detergent fiber, total dietary fiber, insoluble dietary fiber and ${\beta}-glucan$ as well as lower concentrations of GE and ether extract were observed in the French barley compared with the other two barley sources. The DE and ME as well as the SID of histidine, isoleucine, leucine and phenylalanine in Canadian barley were higher (p<0.05) than those in French barley but did not differ from Australian barley. Conclusion: Differences in the chemical composition, energy content and the SID and AID of AA were observed among barley sources obtained from three countries. The feeding value of barley from Canada and Australia was superior to barley obtained from France which is important information in developing feeding systems for growing pigs where imported grains are used.

Global Trend of CO2 Capture Technology Development (이산화탄소 포집기술 국외 기술개발 동향)

  • Baek, Jeom-In
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.143-165
    • /
    • 2016
  • The amount of greenhouse gas emission reduction based on INDCs (Intended Nationally Determined Contributions) submitted to UN by each party is not sufficient to achieve the Paris Agreement's aim to "hold the increase in the global average temperature to well below $2^{\circ}C$ above pre-industrial levels and to pursue efforts to limit the temperature increase to $1.5^{\circ}C$" which was determined in the $21^{st}$ Conference of the Parties to the UNFCCC (COP 21). Accordingly, the emission reduction target of each party will be revised for the $2^{\circ}C$ goal. Among the several options to reduce the carbon emission, CCS (Carbon Capture and Storage) is a key option to curb $CO_2$ emissions from large emission sources such as fossil-based power plants, cement plants, and steel production plants. A large scale CCS demonstration projects utilizing $1^{st}$ generation $CO_2$ capture technologies are under way around the world. It is anticipated, however, that the deployment of those $1^{st}$ generation $CO_2$ capture technologies in great numbers without government support will be difficult due to the high capture cost and considerable increase of cost of electricity. To reduce the carbon capture cost, $2^{nd}$ and $3^{rd}$ generation technologies are under development in a pilot or a bench scale. In this paper, current status of large scale CCS demonstration projects and the $2^{nd}$ and $3^{rd}$ generation capture technologies are summarized. Novel capture technologies on wet scrubbing, dry sorbent, and oxygen combustion are explained in detail for all capture areas: post-combustion capture, pre-combustion capture, and new combustion technologies.

A Systematic Approach to Port related Problems An Analysis on the Actual Condition of physical Distribution System of Pusan port (항만관련문제의 시스템적 고찰 부산항 물류시스템의 실태분석)

  • Lee Cheol-Yeong;Moon Seong-Hyeok
    • Journal of Korean Port Research
    • /
    • v.2 no.1
    • /
    • pp.7-28
    • /
    • 1988
  • From the viewpoint of physical distribution, the port transport process can be regarded as a system which consists of various subsystems such as navigational aids, quay handling, transfer, storage, information If management, and co-ordination with inland transport. The handling productivity of this system is determined by the production level of the least productive subsystem. So, a productivity analysis on the flow of cargoes through each subsystem should be made in order to achieve efficient port operation. The purpose of this paper is to analyze the productivity of each subsystem in Pusan port, and to bring forward problems and finally to draw up plans for their betterment. Analyzed results on the productivity of each subsystem are as follows, i) It is known that the number of tugs with low HP should be increased by a few, the number of tugs with medium HP is appropriate, and the number of tugs with high HP is in excess of that necessary. ii ) In the case of container cargoes, it is found that the transfer and storage systems in BCTOC have the lowest handling capability, with a rate of $115\%$, leading to bottle-necks in the port transport system, while the handling rate of the storage and quay handling systems in general piers is in excess of the inherent capability. iii) In the case of the principal seaborne cargoes passing through general piers, there is found to be a remarkable bottle-neck in the storage system. In the light of these findings, both the extension of storage capability and the extension of handling productivity are urgently required to meet the needs of port users. Therefore, iv) As a short-term plan, it is proposed that many measures such as the reduction of free time, the efficient application of ODCY, etc must be brought in and v) In the long-trun, even though the handling capability will accommodate an additional 960,000 TEU in 1991, the scheduled completion date of the third development plan of Pusan port, insufficiency of handling facilities in the container terminal is still expected and concrete countermeasures will ultimately have to be taken for the port's harmonious operation. In particular, the problem of co-ordination with inland transport and urban traffic should be seriously examined together in the establishment of the Pusan port development. As a method of solving this, vi) It is suggested that Pusan port (North port) should be converted into an exclusive container ternimal and overall distribution systems to the other ports for treating general cargoes must be established. vii) And finally, it is also proposed that the arrival time (cut-off time) of influx cargoes for exports such as general merchandise and steel product should be limited, with a view to securing cargoes suitable for the operational capability of BCTOC.

  • PDF

On the Development of Bonded Joints for Modular FRP Hulls using Moulding-In Concept (모듈방식 FRP 선체를 위한 Moulding-In 개념 기반의 접합 이음부 개발에 관한 연구)

  • Jeong, Han Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.531-539
    • /
    • 2017
  • This paper deals with the development of bonded joints for fibre reinforced plastic (FRP) hull structures using moulding-in concept. Focus is placed on bonded in-plane connections between two adjacent panels that could form the boundaries of hull structural module. Traditional construction in FRP hull structures requires the construction of a mould, usually from steel or aluminium. In this construction the FRP materials are laid in the mould, and resin is saturated, and then the structural member is cured. This is expensive since it involves the fabrication of metal hull mould for every different hull type, which is sacrificed after the production of the FRP ship. One way of encouraging greater use of FRP in ship construction is to investigate the possible construction of FRP hull structures in a similar manner to metallic ships, that is in terms of blocks or modules. Such a manner of construction would eliminate the need for expensive hull moulds permitting greater flexibility in the construction of FRP ships. The main issue then would be the design and construction of adequate bonded connections between adjacent panels. To fulfill this object, the simplified and automated way of manufacturing joint edge shapes for bonded joints is developed, and their structural assessment is performed in both experimentally and numerically.

A Study on the compensation margin on butt welding joint of large steel plates in shipyards (조선해양 구조물 주판의 Butt welding joint 수축에 관한 연구)

  • Kim, Jeongtae;Lee, Daechul;Jeong, Hyomin;Chung, Hanshik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.461-466
    • /
    • 2013
  • This paper examines the characteristics of butt welding joint shrinkage for shipbuilding and marine structures main plate. The shrinkage strain of butt welding joint which is caused by the process of heat input and cooling, results in the difference between dimensions of the actual parent metal and the dimensions of design. This, in turn, leads to poor quality in the production of ship blocks and reworking through period of correction brings about impediment on improvement of productivity. Through experiments on butt welding joint's shrinkage strain on large structures main plate, the deformation of welding residual stress in the form of I, Y, V was obtained. In addition, the results of experiments indicate that there is limited range of shrinkage in the range of 1 ~ 2 mm in 11t ~ 21.5t thickness and the effect of heat transfer of weld appears to be limited within 1000mm based on one side of seam line so there was limited impact of weight of parent metal on the shrinkage. Finally, it has been learned that Shrinkage margin needs to be applied differently based on groove phenomenon in the design phase in order to minimize shrinkage.

Reforming Environmentally-Harmful Subsidies in the Energy and Electricity Sectors in Korea (우리나라 에너지·전력 부문 보조금의 환경친화적 개편 효과 분석 : 연산일반균형분석을 중심으로)

  • Kim, Seung-Rae;Kang, Man-Ok
    • Environmental and Resource Economics Review
    • /
    • v.20 no.4
    • /
    • pp.827-858
    • /
    • 2011
  • In Korea, various environmentally harmful subsidies are granted in agriculture, fishery, energy, electricity, transportation, steel and shipbuilding industry. Examples include tax-exempt fuel for agriculture & fishery, VAT- exemption for briquette & anthracite, temporary subsidy for fuel, production stabilizing subsidy for coal mining, subsidy for briquette. Korea's yearly total subsidy in energy area is about 5,291 billion won, among them is 4,870 billion won. To reduce air pollutants and to mitigate climate change, Korea has to review the phase-out of environmentally harmful subsidies and the phase-in of environment-friendly subsidy. The reduction or removal of environmentally harmful subsidies will enhance economic efficiency and bring about environmental benefits. Economic efficiency means less use of inputs, which reduces environmental cost and improves social benefits. This paper applies the Shoven and Whalley's model to the Korean economy and analyzes the general equilibrium incidence effects of reforming environmentally harmful subsidies in the energy and electricity in Korea. We consider several counterfactual scenarios in which current environmentally harmful subsidies are reduced or abolished, compare them with the reference case in the economy, and evaluated the change in efficiency costs and distributional incidence of tax reforms related to subsidies.

  • PDF

Economic Feasibility Analysis of the Metropolitan Area Green Heat Project (수도권 그린히트 프로젝트의 경제적 타당성 분석)

  • Kim, Sang-Kee;Kim, Lae Hyun;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.32-41
    • /
    • 2015
  • The Metropolitan Area Green Heat Project (MAGHP), which collects unused heat gathered from power plants, steel works, landfills in western Metropolitan area and distribute it to integrated energy business (IEB) companies, is proposed for the purpose of enhancing energy efficiency and providing low-price heat for IEB companies. Therefore, in order to decide on whether to initiate the MAGHP, the economic feasibility analysis of the project is widely demanded. This paper attempts to consider and measure four economic benefits: heat supply benefit, production cost reduction benefit, greenhouse gas mitigation benefit, and air quality improvement benefit. In addition, the paper tries to conduct the economic feasibility analysis. The project requires three-year investment and thirty-year operation. Three important findings emerge from the analysis. First, its net present value is computed to be 1,269 billion won and more than zero. Second, its benefit/cost ratio is calculated to be 1.72 and bigger than 1.0. Third, its internal rate of return is estimated to be 24.26% and larger than the social rate of return, 5.5%. In conclusion, the MAGHP is socially profitable and should be conducted immediately.

Synthesis of Na-A type Zeolite From Melting Slag (소각재 용융슬래그를 이용한 제올라이트 Na-A의 합성)

  • Jang Young-Nam;Chae Soo-Chuu;Bae In-Kook;Ryou Kyung-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2005
  • Na-A zeolite were synthesized from melting slag of the incinerated ash by the alkaline activation processes. The experiments were performed in stainless steel vessels, with continuous stirring during the reaction periods. The silica-rich solution, a starting material, which was the waste of crystal growth factory, contains 5.7 wt% SiO₂ and 3.2 wt% Na₂O. And NaAlO₂ was made by the reaction of aluminium dross and NaOH solution and its molar ratios were Na₂O/Al₂O₃= 1.2 and H₂O/Na₂O=9. During the residence time of 7∼8 h at 80℃, the mixing of the silica-rich solution, NaAlO₂ and melting slag yields the production of homogeneous Na-A zeolite. The optimal reactant composition in molar ratio of Na₂O:Al₂O₃:SiO₂ was 1.3∼l.4 : 0.8∼0.9 : 2 and mixing ratio of solution and slag was 1/7∼10 (g/cc). Synthesized Na-A zeolite has cubic form uniformly and its size ranges about 1 ㎛. Ca/sup 2+/ ion exchange capacity of the Na-A was about 180∼210 meq/100g, corresponding approximately 80% to the commercial detergent builder.

High Temperature Corrosion Effect of Superheater Materials by Alkali Chlorides (염화알칼리에 의한 과열기 소재의 고온부식 영향)

  • Kim, Beomjong;Jeong, Soohwa;Kim, Hyesoo;Ryu, Changkook;Lee, Uendo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.339-347
    • /
    • 2018
  • In order to cope with environmental problems and climate change caused by fossil fuels, renewable energy supply is increasing year by year. Currently, waste energy accounts for 60% of renewable energy production. However, waste has a lower calorific value than fossil fuels and contains various harmful substances, which causes serious problems when applied to power generation boilers. In particular, the chlorine in the waste fuel increases slagging and fouling of boiler heat exchangers, leading to a reduction in thermal efficiency and the main cause of high temperature corrosion, lowering facility operation rate and increasing operating cost. In this study, the high temperature corrosion experiments of superheater materials (ASME SA213/ASTM A213 T2, T12 and T22 alloy steel) by alkali chlorides were conducted, and their corrosion characteristics were analyzed by the weight loss method and SEM-EDS. Experiments show that the higher the temperature and chloride content, the more corrosion occurs, and KCl further corrodes the materials compared to NaCl under the same condition. In addition, the higher the chromium content of the material, the better the corrosion resistance to the alkali chlorides.

Physiochemical Characteristics and its Applicable Potential of Blast Furnace Slag Grout Mixtures of Sodium Silicate and Calcium Hydroxide (규산소다 및 수산화칼슘을 적용한 고로슬래그 그라우트의 적용성 및 물리화학적 특성)

  • Kim, Joung-Souk;Yoon, Nam-Sik;Xin, Zhen-Hua;Moon, Jun-Ho;Park, Young-Bok;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • Cement is one of the most commonly used materials in the construction and civil engineering industry. However, emissions of carbon dioxide generated during the production of cement have been linked to climate change and environment pollutants. In order to replace cement, many studies have been actively performed research to utilizing Blast Furnace Slag(BFS), which is a byproduct of the steel industry. This study aims to investigate the physiochemical properties of the BFS powder based grout to determine whether it can be used as an environment-friendly grout material. As a fine powder, BSF can be used instead of cement grout due to its potential hydraulic property. BSF has also been known for its ability to strengthen materials long-term and to densify the internal structure of concrete. In order to investigate the physicochemical properties of the BFS powder based grout as a grout material, in this study assessment tests were performed through a gel-time measurement, uniaxial compressive strength, and chemical resistance tests, and heavy-metal leaching test. Characteristics and advantages of the slag were studied by comparing slag and cement in various methods.


(34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
Copyright (C) KISTI. All Rights Reserved.