• Title/Summary/Keyword: Steel Plate-Girder

Search Result 268, Processing Time 0.033 seconds

Reinforcement Location of Plate Girders with Two Longitudinal Stiffeners (플레이트 거더의 2단 수평보강재 보강 위치)

  • Son, Byung-Jik;Lee, Kyu-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.93-102
    • /
    • 2009
  • Because steel girder bridge has big slenderness ratio, buckling is very important in design. Local buckling of plate girders having two longitudinal stiffeners in different positions under various load conditions is investigated. Various parametric study according to the change of web height, transverse stiffeners and load conditions are examined. These parametric studies are performed by numerical simulation utilizing finite element method. The objective of this study is to present the rational reinforcement location of two longitudinal stiffeners. The results of analysis are compared to that recommended by korean specifications for road bridges(2003).

A Study on Elastic Shear Buckling Coefficients of Horizontally Curved Plate Girder Web Panels (강곡선 플레이트거더 복부판의 전단좌굴계수에 관한 연구)

  • Lee, Doo-Sung;Lee, Sung-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.367-373
    • /
    • 2008
  • In the design of horizontally curved plate girder web panels, it is required to evaluate accurately the elastic buckling strength under pure shear. Currently, elastic shear buckling coefficients of curved web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that straight web panels without curvature are simply supported at the juncture between the flange and web. However, depending upon the geometry and the properties of the curved plate girder, the elastically restrained support may behave rather closer to a fixed support. The buckling strength of curved girder web is much greater (maximum 38%) than that of a straight girder calculated under the assumption that all four edges are simply supported in Lee and Yoo (1999). In the present study, a series of numerical analyses based on a 3D finite element modeling is carried out to investigate the effects of geometric parameters on both the boundary condition at the juncture and the horizontal curvature of web panel, and the resulting data are quantified in a simple design equation.

Research on the longitudinal stress distribution in steel box girder with large cantilever

  • HONG, Yu;LI, ShengYu;WU, Yining;XU, Dailing;PU, QianHui
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • There are numerous structural details (Longitudinal beam, web plate, U-ribs and I-ribs) in the top and bottom plates of steel box girders, which have significant influences on the longitudinal stress (normal stress) distribution. Clarifying the influence of these structural details on the normal stress distribution is important. In this paper, the ultra-wide steel box girder with large cantilevers of the Jinhai Bridge in China, which is the widest cable-stayed bridge in the world, has been analyzed. A 1:4.5 scale laboratory model of the steel box girder has been manufactured, and the influence of structural details on the normal stress distribution in the top and bottom plates for four different load cases has been analyzed in detail. Furthermore, a three-dimensional finite element model has been established to further investigate the influence regularity of structural details on the normal stress. The experimental and finite element analysis (FEA) results have shown that different structural details of the top and bottom plates have varying effects on the normal stress distribution. Notably, the U-ribs and I-ribs of the top and bottom plates introduce periodicity to the normal stress distribution. The period of the influence of U-ribs on the normal stress distribution is the sum of the single U-rib width and the U-rib spacing, and that of the influence of I-ribs on the normal stress distribution is equal to the spacing of the I-ribs. Furthermore, the same structural details but located at different positions, will have a different effect on the normal stress distribution.

Ultimate load behaviour of tapered steel plate girders

  • Shanmugam, N.E.;Min, Hu
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.469-486
    • /
    • 2007
  • The paper is concerned with the behavior of tapered steel plate girders, primarily subjected to shear loading; experimental as well as finite element results obtained from the studies are presented in this paper. In the experimental study, 11 large-scale girders, one of uniform section and 10 tapered, were tested to failure and all girders were analysed by finite element method. The results are compared and the accuracy of the finite element modeling established. A parametric study was carried out with thickness of web, loading direction and taper angle as parameters. An analytical model, based on Cardiff model for girders of uniform cross-section, is also proposed in the paper.

Numerical Evaluation of Lateral-Torsional Buckling Strength in I-section Plate Girder Bridges (I-단면 플레이트거더교의 횡비틀림 좌굴강도의 해석적 평가)

  • Park, Yong Myung;Hwang, Soon Young;Park, Jae Bong;Hwang, Min Oh;Choi, Byung H.
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.321-330
    • /
    • 2009
  • This paper presents numerical analysis results for the lateral-torsional buckling (LTB) strength of steel I-girder bridges. Current Korean and AASHTO design specifications for LTB consider the buckling strength of a single girder with both its ends constrained. The I-girder bridges are composed of more than one girder, and the girders are interconnected with intermediate cross-beams or cross-frames. Therefore, it should be required to evaluate the effects of cross-beam stiffness and the interactionof girders on LTB strength. It is also necessary to consider the effects of transverse web stiffeners on LTB strength. By considering these parameters, a series of four-girder systemswere numerically modeled using 3D shell elements to estimate the LTB strength while considering initial imperfections and residual stresses.

An Analytical Study on Application of Section Increment at Internal Support with External Prestressing Method to Continuous Steel Plate Girder Bridge (연속 강 플레이트거더교에서 내부지점보강과 외부프리스트레싱의 적용에 관한 해석적 연구)

  • Shim, Jae-Joong;Hong, Sung-Nam;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.128-136
    • /
    • 2010
  • It has been verified that there is an effect of diminishing in section bringing in internal core section reinforcement and external prestressing rather than general plate-girder bridge as a consequence of analysis. In particular, positive effect was seen in the aspect of usability when external prestressing was in application as rises gained from it minimized the hanging down of a bridge. Based on the result of analysis, a sectional diagram applicable per number of girder has been illustrated which made it possible to estimate the intensity of internal stress in the futurewhere number of girder is limited to 4 and regression equation is presented after regression analysis has been carried out.

Flange Local Buckling(FLB) for Flexural Strength of Plate Girders with High Performance Steel(HSB 800) (고성능 강재(HSB 800)를 적용한 플레이트 거더의 휨강도에 대한 플랜지 국부좌굴)

  • Kim, Jeong Hun;Kim, Kyoung Yul;Lee, Jeong Hwa;Kim, Kyung Sik;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.91-103
    • /
    • 2014
  • High performance steel for bridges(HSB 800) with a minimum tensile stress of 800MPa was recently developed. However, the study for local buckling behavior of plate girders considering interactive effects of flanges and webs is still insufficient. In this study, the flange local buckling(FLB) strength of plate girders with HSB 800 was evaluated by nonlinear finite element analysis. The flanges and webs of plate girders having I-section were modeled as 3D shell elements in the nonlinear analysis. Initial imperfection and residual stress were imposed on the plate girder. The high performance steel was modeled as a multi-linear material. Thus, parametric study of compression flanges with a compact, noncompact and slender web was performed. The flange local buckling behavior of plate girders was analyzed, and the nonlinear analysis results were compared with the nominal flexural strength of both AASHTO LRFD(2012) and KHBDC LSD(2012) codes.

Damage Analysis of Thin Steel Members with Bolt Connection Using Lamb Wave and PZT Element (Lamb파 전달을 이용한 볼트 연결된 얇은 강판부재의 손상해석)

  • Rhee, Inkyu;Kwak, Hyo-Gyoung;Kim, Jae Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.587-596
    • /
    • 2006
  • A half portion of Korean railway bridges depends on the type of steel plate girder bridge. Since these bridges have been built in the early stage of Korean economical boom, numerous maintenance effort suffers from aging and progressive degradation issues at present. In accordance with these efforts, this paper would like to address the detailed analyses of thin steel plates with bolts in order to simulate the connection regions of steel plate girder bridge. The fundamental modal analysis, transient dynamic analysis with 3D piezoelectric element in open circuit loop and signal process with aids of TOF(time of flight) and WC(wavelet coefficient) are extensively discussed.

Cyclic Test of welding connections for Steel-Plate Concrete Column to H-shaped Steel Girders (강판 콘크리트(SC) 기둥과 H형강 보의 용접 접합부에 대한 반복 이력 실험)

  • Park, Ho Young;Kang, Cheol Kyu;Choi, Byong Jeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.63-71
    • /
    • 2014
  • This study presents an experimental study of the structural behavior for steel plate-concrete column-to-steel girder connections. Experiments were carried out to investigate the moment-rotation characteristics, failure behavior and ultimate moment capacity of these connections. The results of this experimental study involving three welded moment-resisting connections subjected to cyclic loading are presented. The specimens were fabricated at full scale to evaluate their hysteretic behavior. A description of the test specimens, the details of the joint, the test system and the testing methods are described. The test results showed that the structural behavior of these composite connections was influenced by the connection details.

Fatigue Test and Service Life Assessment of Steel Truss Bridges with Initial Imperfections (초기결함을 갖는 강교량의 피로시험 및 수명 평가)

  • 방명석
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.119-122
    • /
    • 2000
  • The truss bridge is composed of numerous steel beams. In long span bridges the size of beams is getting larger, so the number of plate girders is increasing instead of rolled beams. This plate girder has long welding lines at the intersection of steel plates. The improper welding at the intersection line causes the steel bridge to be structurally unsafe. In this paper the loss of member section from improper welding was measured and the experimental testing was performed to get the S-N curve from testing models with sectional losses. The improper welding resulted in the lowering of structural safety and the shortening of life cycle.

  • PDF