• Title/Summary/Keyword: Steel Hysteresis Damper

Search Result 24, Processing Time 0.028 seconds

An Experimental Study on the Characteristics of Steel Hysteretic Dampers with Pin-type Elements (실험을 통한 핀타입(pin-type) 강재이력댐퍼의 거동특성연구)

  • 강형택;김인배;이일근;정진혁
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.257-262
    • /
    • 2003
  • Base isolation bearings are known as an effective system to Protect bridges from the earthquake damage. There are many types of base isolation bearings in the market. Among them, steel hysteretic damper, made of mild steel and one of the oldest ones, has some good features. Since steel hysteretic damper is made of steel and has simple structure, it is cheeper and easier to maintain than other types. Despite the advantages, steel hysteretic damper with pin-type elements has no application in Korea. The steel hysteretic damper with pin-type elements are tested to examin the basic characteristics and to evaluate antiseismic performance. In this paper, the results of the test are presented.

  • PDF

Research on a novel shear lead damper: Experiment study and design method

  • Chong, Rong; Wenkai, Tian;Peng, Wang;Qingxuan, Shi
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.865-876
    • /
    • 2022
  • The slit members have lower strength and lower stiffness, which might lead to lower energy dissipation. In order to improve the seismic performance of the slit members, the paper proposes the shear lead damper, which has stable performance and small deformation energy dissipation capacity. Therefore, the shear lead damper can set in the vertical silts of the slit member to transmit the shear force and improve energy dissipation, which is suitable for the slit member. Initially, the symmetrical teeth-shaped lead damper was tested and analyzed. Then the staggered teeth-shaped lead dampers were developed and analyzed, based on the defect analysis and build improvements of the symmetrical specimen. Based on the parameter analysis, the main influence factors of hysteretic performance are the internal teeth, the steel baffles, and the width and length of damper. Finally, the theoretical analysis was presented on the hysteretic curve. And the skeleton curve and hysteresis path were identified. Based on the above theoretical analysis, the design method was proposed, including the damping force, the hysteresis model and the design recommendations.

Experimental Study on Structural Performance of Steel Slit Damper According to Restrained Out-of-plane Deformation (면외변형 구속에 따른 강재슬릿댐퍼의 구조성능에 관한 실험적 연구)

  • Jin-Woo Kim;U-Jin Kwon;Kwang-Yong Choi;Young-Ju Kim;Hae-Yong Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.86-94
    • /
    • 2023
  • In this study, a supplementary detail capable of restraining out-of-plane deformation was proposed for steel slit dampers, and a constant amplitude cyclic loading test was performed with the application of the proposed detail and the shape ratio of the damper as variables. Repeated hysteresis and cumulative plastic deformation according to the test results were analyzed. Repeated hysteresis of the slit damper with the proposed detail showed a stable spindle-shaped hysteresis within the set variable range, and no out-of-plane deformation of the damper was observed until ultimate state. It was confirmed that the restraining panel effect through the application of the proposed details is effective in terms of both the strength and deformation capacity of the damper. In addition, experimental parameters for the fatigue curve evaluation of slit dampers were derived in this study. Based on the results, it is judged that quantitative comparison of structural performance with various types of seismic devices will be possible in the future.

Structural Performance Evaluations of Steel Hysteretic Damper in Series for High-Rise Shear Wall System (고층 전단벽시스템 적용을 위한 직렬 연결형 강재이력댐퍼의 구조성능평가)

  • Oh, Sang-Hoon;Choi, Kwang-Yong;Ryu, Hong-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.371-382
    • /
    • 2012
  • Existing shear wall system may cause ductility fallen to the structure which it is on because relatively weak concrete core would easy to be damaged. In this study, steel hysteresis dampers whose stiffness is higher than existing coupling beam and whose strength is easy to change depending on design load was used in coupling beam. The steel hysteresis damper was proposed for the shape connected in double in series, from this, several static test were conducted to verify structural performance of the damper. FEM analysis was also performed, then design equation were suggested.

A Study on Forced Vibration Tests on a Structure with Stud Type of Vibration Control Damper (스터드형 진동제어 강재댐퍼가 장착된 3층 강구조 골조의 강제진동실험에 관한 연구)

  • Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.115-121
    • /
    • 2006
  • In recent years vibration control damper made of low yield point steel is expected to play an important role in controlling structural vibration induced earthquake and wind. But their dynamic characteristics and energy dissipation effects on the whole structure model are not clarified. In this paper, firstly, we presents the results of cyclic tests on low yield steel dampers. Secondly, forced vibration tests on existence three stories steel structure model with low yield point steel dampers are presented. Lastly, it is estimated energy amount which is dissipated through the hysteresis dampers by using two types of analytical models, hysteresis model and equivalent linear model.

  • PDF

An Experimental Study on Performance Evaluation of Hysteretic Steel Slit Damper (슬릿형 강재이력 감쇠장치의 성능평가를 위한 실험연구)

  • Choi, Ki-Sun;Lee, Hyun-Jee;Kim, Min-Sun;You, Young-Chan
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • This study performed experimental validation of the hysteretic steel slit damper's basic and dependent characteristics, which should be considered for the design. The basic characteristic of the steel slit damper is used for determining design properties of non-linear analysis, such as yielding strength, yielding displacement, elastic stiffness and post-yielding stiffness. In order to evaluate dependent characteristics of the hysteretic steel slit damper, repeated deformation capacity with respect to the displacement, velocity and aspect ratio of the damper was evaluated. In this study, steel slit damper, which is widely used in Korea, was considered. The slit dampers with 55kN and 240kN of yielding strength were produced and tested. It was concluded that the slit damper's hysteresis behavior was affected by the dependent characteristics: displacement, velocity and aspect ratio. In other words, the steel slit damper's behavior was stable within limit displacement, and aspect ratio of the strut affected repeated deformation capacity of the damper subjected to large deformation. In addition, it was observed that the repeated deformation capacity abruptly decreased at the high speed range (${\geq}60mm/sec$). Furthermore, the experimental results were evaluated with the criterion of the damping device specified in ASCE7-10.

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

Development of a Shear Yielding Steel Damper for Concentrically Braced Frames (중심가새골조의 내진성능향상을 위한 전단항복댐퍼의 개발)

  • Ghamar, Ali;Jeong, Seong-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.437-443
    • /
    • 2021
  • In this study, the use of a steel yielding damper is considered as an appropriate method to enhance the behavior of CBFs and a steel damper which is economical and straightforward to construct and replace after a severe earthquake is developed. The proposed damper was investigated experimentally and numerically. In addition, a parametric study was performed to evaluate the effect of the three types of damper mechanisms (shear, shear-flexural, and flexural) on the behavior of the proposed damper. The experimental results, as well as the numerical results, indicate that the shear damper exhibits better performance than the other dampers in terms of strength and stiffness.

A proposal for improving the behavior of CBF braces using an innovative flexural mechanism damper, an experimental and numerical study

  • Ghamari, Ali;Jeong, Seong‐Hoon
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.455-466
    • /
    • 2022
  • Despite the considerable lateral stiffness and strength of the Concentrically Braced Frame (CBF), it suffers from low ductility and low seismic dissipating energy capacity. The buckling of the diagonal members of the CBF systems under cyclic loading ended up to the shortcoming against seismic loading. Comprehensive researches have been performing to achieve helpful approaches to prevent the buckling of the diagonal member. Among the recommended ideas, metallic damper revealed a better success than other ideas to enhance the behavior of CBFs. While metallic dampers improve the behavior of the CBF system, they increase constructional costs. Therefore, in this paper, a new steel damper with flexural mechanism is proposed, which is investigated experimentally and numerically. Also, a parametrical revision was carried out to evaluate the effect of thickness, slenderness ratio, angle of the main plate, and height of the main plates on the proposed damper. For the parametrical study, 45 finite element models were analyzed and considered. Experimental results, as well as the numerical results, indicated that the proposed damper enjoys a stable hysteresis loop without any degradation up to a high rotation equal to around 31% that is significantly considerable. Moreover, it showed a suitable performance in case of ductility and energy dissipating. Besides, the necessary formulas to design the damper, the required relations were proposed to design the elements outside the damper to ensure the damper acts as a ductile fuse.

Shaking table study of a 2/5 scale steel frame with new viscoelastic dampers

  • Chang, K.C.;Tsai, M.H.;Lai, M.L.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.3
    • /
    • pp.273-286
    • /
    • 2001
  • Viscoelastic (VE) dampers have shown to be capable of providing structures with considerable additional damping to reduce the dynamic response of structures. However, the VE material appears to be sensitive to the variations in ambient temperature and vibration frequency. To minimize these effects, a new VE material has been developed. This new material shows less sensitivity to variations in vibration frequency and temperature. However, it is highly dependent on the shear strain. Experimental studies on the seismic behavior of a 2/5 scale five-story steel frame with these new VE dampers have been carried out. Test results show that the structural response can be effectively reduced due to the added stiffness and damping provided by the new type of VE dampers under both mild and strong earthquake ground motions. In addition, analytical studies have been carried out to describe the strain-dependent behavior of the VE damper. The dynamic properties and hysteresis behavior of the dampers can be simulated by a simple bilinear model based on the equivalent dissipated energy principle proposed in this study.