• Title/Summary/Keyword: Steel Fiber

Search Result 1,935, Processing Time 0.019 seconds

Shear Strength of SFRC Deep Beam with High Strength Headed Reinforcing Tensile Bars (고강도 확대머리 인장철근을 가지는 SFRC 깊은 보의 전단강도)

  • Kim, Young-Rok;Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.111-117
    • /
    • 2019
  • Shear experiments were carried out to evaluate shear performance of SFRC deep beams with end-anchorage of SD600 high strength headed reinforcing tensile bars. The experimental variables include the end-anchorage methods of tensile bars (headed bar, straight bar), the end-anchorage lengths, and the presence of shear reinforcement. Specimens with a shear span ratio of 1 showed a pattern of the shear compression failure with the slope cracks progressed after the initial bending crack occurred. Specimens with end-anchorage of headed bars (H-specimens) showed a larger shear strengths of 5.6% to 22.4% compared to straight bars (NH-specimens). For H-specimens, bearing stress reached 0.9 to 17.2% of the total stress of tensile bars up to 75% of the maximum load, and reached 22.4% to 46%. This shows that the anchorage strength due to the bearing stress of headed bars has a significant effect on shear strength. The experimental shear strength was 2.68 to 4.65 times the theoretical shear strength by the practical method, and the practical method was evaluated as the safety side.

Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy (자동차 연비향상을 위한 복합재료 적용 타당성에 관한 연구)

  • Ju, Yeon Jin;Kwon, Young-Chul;Choi, Heung Soap
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.284-289
    • /
    • 2019
  • In the present paper, the dynamic force-moment equilibrium equations, driving power and energy equations are analyzed to formulate the equation for fuel economy(km/liter) equivalent to the driving distance (km) divided by the fuel volume (liter) of the vehicle, a selected model of gasoline powered KIA K3 (1.6v). In addition, the effects of the dynamic parameters such as speed of vehicle (V), vehicle total weight(M), rolling resistance ($C_r$) between tires and road surface, inclined angle of road (${\theta}$), as well as the aerodynamic parameters such as drag coefficient ($C_d$) of vehicle, air density(${\rho}$), cross-sectional area (A) of vehicle, wind speed ($V_w$) have been analyzed. And the possibility of alternative materials such as lightweight metal alloys, fiber reinforced plastic composite materials to replace the conventional steel and casting iron materials and to reduce the weight of the vehicle has been investigated by Ashby's material index method. Through studies, the following results were obtained. The most influencing parameters on the fuel economy at high speed zone (100 km/h) were V, the aerodynamic parameters such as $C_d$, A, ${\rho}$, and $C_r$ and M. While at low speed zone (60 km/h), they are, in magnitude order, dynamic parameters such as V, M, $C_r$ and aerodynamic ones such as $C_d$, A, and ${\rho}$, respectively.

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

An Investigation on the Long Term Durability of High-strength Shotcrete Using Field and Combined Deterioration Test (현장실험과 복합열화시험을 통한 고강도 숏크리트의 장기내구성 검토)

  • Ma, Sang-Joon;Choi, Jae-Seok;Ahn, Kyung-Chul;Kim, Sun-Myung;Kim, Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.77-91
    • /
    • 2006
  • Domestic practices in shotcrete use have developed in many respects even now, but it still has issues about material, construction, quality standard and so on. In overseas, the construction using high strength shotcrete with $39.2{\sim}58.8 MPa$ of compressive strength is becoming common based on the shotcrete technology of high strength and durability. However, domestic shotcrete design strength is low at around 20.6 MPa of compressive strength and a long term durability is also insufficient. In this paper, field tests using high-quality additives and accelerators were performed to obtain the improvement of shotcrete strength and EFNARC standard was used to evaluate the field test results. In addition, deterioration test combined with the freezing-thawing and carbonation was also performed in order to investigate a long-term durability of high-strength shotcrete. As a result of the field test, the promotion ratio of early strength was $90{\sim}97%$ in case of using alkali-free accelerators. And the compressive strength of the shotcrete using Micro-silica fume was $45.2{\sim}55.8MPa$ and flexible strength was $5.01{\sim}6.66MPa$, so the promotion ratio of strength was $37{\sim}79%$ and $17{\sim}61%$ respectively. The promotion effect of strength by silica fine additives ratio of $7.5{\sim}10%$ for cement mass was much superior to the other cases. It was especially examined that using Micro-silica fume reduced deterioration due to mixed steel fiber and improved a long-term durability of shotcrete.

Trickling Performance of Individual Watering System with Variety, Thickness and Firing Temperature of Ceramic (세라믹 종류, 두께 및 소성온도에 따른 식물개체제어형 세라믹 자동점적관수시스템의 점적성능)

  • 양원모
    • Journal of Bio-Environment Control
    • /
    • v.8 no.4
    • /
    • pp.257-264
    • /
    • 1999
  • The trickling system for automatic and individual watering were made with Bunchungto, Ongito and Backjato. The thickness of ceramics were 1.0, 1.5, 2.0, 2.5 and 3.0mm. And they were fired in a muffle furnace at five different temperatures between 500 and 900'E during 12 hours. The upper plastic parts of sensor consisted of five elements made by steel mold. With the photo fiber sensor attached to datalogger, an accumulated amount of drops for every 10 minutes were recorded. The porosity is higher in the order of Bunchungto, Backjato and Ongito; also, as the firing temperature is higher and the thickness is thicker, the porosity is higher. The ceramic sensors consisted of $SiO_2$ of 54.17~71.62wt.%, A1$_2$ $O_3$ of 15.42~33.79wt.% and the rest of 10wt.%, those were Fe$_2$ $O_3$, CaO, MgO, Na$_2$O, $K_2$O, Ti $O_2$, P$_2$ $O_{5}$. The pattern of dropping were changed according to the variety, thickness and firing temperature of ceramics. As the ceramics were made thicker, the fluctuation of dropping became more rapid, but it did not regularly work at 1mm thickness. As the firing temperature of ceramics became higher, the fluctuation of dropped amount became more rapid.

  • PDF