• Title/Summary/Keyword: Steel Core

Search Result 800, Processing Time 0.027 seconds

The efficiency of passive confinement in CFT columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.379-396
    • /
    • 2002
  • The paper describes the mechanical behavior of short concrete-filled steel tube (CFT) columns with circular section. The efficiency of the steel tube in confining the concrete core depending on concrete strength and the steel tube thickness was examined. Fifteen columns were tested to failure under concentric axial loading. Furthermore, a mechanical model based on the interaction between the concrete core and the steel tube was developed. The model employs a volumetric strain history for the concrete, characterized by the level of applied confining stress. The situation of passive confinement is accounted for by an incremental procedure, which continuously updates the confining stress. The post-yield behavior of the columns is greatly influenced by the confinement level and is related to the efficiency of the steel tube in confining the concrete core. It is possible to classify the post-yield behavior into three categories: strain softening, perfectly plastic and strain hardening behavior. The softening behavior, which is due to a shear plane failure in the concrete core, was found for some of the CFT columns with high-strength concrete. Nevertheless, with a CFT column, it is possible to use high-strength concrete to obtain higher load resistance and still achieve a good ductile behavior.

Bond Strength of Steel honeycomb Structure (철강 하니콤구조의 접합강도)

  • Song, Keun;Hong, Young Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.197-204
    • /
    • 2003
  • Honeycomb structure has been fabricated by brazing method using 0.1 wt%C and 1.0wt%C carbon steel core and STS304 stainless steel face sheet. Core shear strength ratio in W and L directions was 1:1.03 in 7 mm cell size, whereas 1:1.45 in 4 mm cell size. Flexural strength on face sheet was 166.4 MPa (0.1 wt%C, W direction), 171.1 MPa (0.1 wt%C, L direction), and 120.2 MPa (1.0 wt%C, W direction) in 7 mm cell size. And in 4mm cell size specimen, it was 169.2 MPa (0.1 wt%C, W direction), 224.2 MPa (0.1 wt%C, L direction). This means that flexural strength of 0.1 wt%C core material was higher than that of 1.0wt%C core material, which was contrary to expectation. SEM and EDS analysis represented that grain boundary diffusion had occurred in0.1 wt%C core, but no grain boundary diffusion in 1.0 wt%C core. And corrugated surface of 0.1 wt%C core was flat, whereas that of 1.0 wt%C core was not flat. As a result, contact area between two 1.0 wt%C cores was much less than that of 0.1 wt% cores, It is thought to be main reason for lower flexural strength of 1.0 wt%C core.

Effects of Crystal Grain Size and Particle Size on Core Loss For Fe-Si Compressed Cores

  • Takemoto, Satoshi;Saito, Takanobu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1183-1184
    • /
    • 2006
  • Core loss of soft magnetic powder cores have been focused on to achieve high efficiency of power supplies. In this study the effects of crystal grain size on core loss were investigated by changing heat treatment conditions. It was found that core loss is influenced by crystal grain size because eddy current loss decreased and hysteresis loss increased by making crystal grain size smaller, and it is also influenced by particle size.

  • PDF

State-of-the-art of advanced inelastic analysis of steel and composite structures

  • Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.341-354
    • /
    • 2001
  • This paper provides a state-of-the-art review on advanced analysis models for investigating the load-displacement and ultimate load behaviour of steel and composite frames subjected to static gravity and lateral loads. Various inelastic analysis models for steel and composite members are reviewed. Composite beams under positive and negative moments are analysed using a moment-curvature relationship which captures the effects of concrete cracking and steel yielding along the members length. Beam-to-column connections are modeled using rotational spring. Building core walls are modeled using thin-walled element. Finally, the nonlinear behaviour of a complete multi-storey building frame consisting of a centre core-wall and the perimeter frames for lateral-load resistance is investigated. The performance of the total building system is evaluated in term of its serviceability and ultimate limit states.

Heat Treatment of Stator Core for Reduction of DC-Bias of Cogging Torque (코깅토크 DC성분 저감을 위한 모터 철심 열처리)

  • Ha, Kyung-Ho;Kim, Ji-Hyun;Kwon, Oh-Yeoul;Kim, Jae-Kwan;Lim, Yang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.695-696
    • /
    • 2008
  • This paper deals with the reduction of DC component of cogging toruqe by using the heat treatment of the stator core. The stator core is made of electrical steel sheared by the punching die. From the punching process, large mechanical stress at the edge of stator tooth induces significant plastic and elastic deformation and influences magnetic properties. Then, these phenomenon in the sheared region has influence on the magnetic unbalance in the air-gap of motor. This paper investigated the effect of the punching process on the magnetization process and the mechanical deformation and proposed the stress relief annealing method for the reduction of friction torque among one of motor characteristics.

  • PDF

Improved Linearity and Saturation of Current Sensor by Laminating Silicon Steel and Fermalloy (퍼멀로이와 실리콘스틸의 적층 통한 전류센서의 선형성 및 포화도 개선)

  • Shin, Jung-Won;Choi, Bong-Seok;Ha, Yeong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.194-201
    • /
    • 2015
  • The current sensor is used in industrial devices and power utilities. Core materials of these current sensors are divided into mainly two groups as silicon steel and fermalloy. Silicon steel has a wide saturation bandwidth but low sensitivity during low-current, whereas permalloy has a short saturation bandwidth but high sensitivity during low-current. In this paper, laminated silicon steel and permalloy by equal ratio is proposed to improve the linearity and saturation of current sensor. It is proved that the proposed core material has larger bandwidth than fermalloy as well as higher sensitivity than silicon steel. When comparing simulation results by FLUX 3D, the proposed method has also better performance than the previous core materials.

Characteristics of Ni-based Alloy Bond in Diamond Tool Using Vacuum Brazing Method

  • An, Sang-Jae;Song, Min-Seok;Jee, Won-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1130-1131
    • /
    • 2006
  • We found that the """interface reaction between Ni-based alloy bond, diamond, and steel core is very critical in bond strength of diamond tool. None element from metal bond diffuses into the steel core but the Fe element of steel core was easily diffused into the bond. This diffusion depth of Fe has a great effect on the bonding strength. The Cr in steel core accelerated the Fe diffusion and improved the bond strength, on the other hand, carbon decreased the strength. Ni-based alloy bond including Cr was chemically bonded with diamond by forming Cr carbide. However, the Cr and Fe in STS304 were largely interdiffused, the strength was very low. The Cr passivity layer formed at surface of STS304 made worse strength at commissure in brazing process.

  • PDF

Numerical analyses of the force transfer in concrete-filled steel tube columns

  • Starossek, Uwe;Falah, Nabil;Lohning, Thomas
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.241-256
    • /
    • 2010
  • The interaction between steel tube and concrete core is the key issue for understanding the behavior of concrete-filled steel tube columns (CFTs). This study investigates the force transfer by natural bond or by mechanical shear connectors and the interaction between the steel tube and the concrete core under three types of loading. Two and three-dimensional nonlinear finite element models are developed to study the force transfer between steel tube and concrete core. The nonlinear finite element program ABAQUS is used. Material and geometric nonlinearities of concrete and steel are considered in the analysis. The damage plasticity model provided by ABAQUS is used to simulate the concrete material behavior. Comparisons between the finite element analyses and own experimental results are made to verify the finite element models. A good agreement is observed between the numerical and experimental results. Parametric studies using the numerical models are performed to investigate the effects of diameterto-thickness ratio, uniaxial compressive strength of concrete, length of shear connectors, and the tensile strength of shear connectors.

Multi-material core as self-centering mechanism for buildings incorporating BRBs

  • Hoveidae, Nader
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.589-599
    • /
    • 2019
  • Conventional buckling restrained braces used in concentrically braced frames are expected to yield in both tension and compression without major degradation of capacity under severe seismic ground motions. One of the weakness points of a standard buckling restrained braced frame is the low post-yield stiffness and thus large residual deformation under moderate to severe ground motions. This phenomenon can be attributed to low post-yield stiffness of core member in a BRB. This paper introduces a multi-core buckling restrained brace. The multi-core term arises from the use of more than one core component with different steel materials, including high-performance steel (HPS-70W) and stainless steel (304L) with high strain hardening properties. Nonlinear dynamic time history analyses were conducted on variety of diagonally braced frames with different heights, in order to compare the seismic performance of regular and multi-core buckling restrained braced frames. The results exhibited that the proposed multi-core buckling restrained braces reduce inter-story and especially residual drift demands in BRBFs. In addition, the results of seismic fragility analysis designated that the probability of exceedance of residual drifts in multi-core buckling restrained braced frames is significantly lower in comparison to standard BRBFs.

Study of Plastic Deformation of Steel Wire for Weight Reduction of Automotive Weather Strip (자동차 웨더스트립 심재 경량화를 위한 강선(Steel Wire)의 소성변형 연구)

  • Choi, Bosung;Lee, Dugyoung;Jin, Chankyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.82-86
    • /
    • 2013
  • The automotive weather strip has the functions isolating of dust, water, noise and vibration from outside. The core of weather strip is made of steel with stiffness. By using the wire formed as the core of weather strip, weight can be reduced as much as 35% by comparing with existing steel core. For this reason, forming wire is necessary to keep the zigzag shape as it is. The deformation which is occurred during forming process can be predicted and it can be used in case of manufacturing dies through CAE. In this paper, rolling process conditions are deduced and the springback amount is predicted after rolling process by using the simulation. The springback amount of product is measured by using optical microscope, and measurement result is compared with the simulation result of springback as the same condition. The suitable gap between dies to compensate springback after rolling process is predicted through simulation and it is used for manufacturing dies.