• Title/Summary/Keyword: Steel Composite Girder

Search Result 323, Processing Time 0.024 seconds

Analysis of Fatigue Truck Model for LRFD Code (LRFD 설계기준(안) 피로설계트럭 모형 분석)

  • Cho, Eun Young;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.331-342
    • /
    • 2009
  • A reliability analysis of the fatigue failure of highway steel bridges was performed by applying the Miner's fatigue damage rule for the fatigue design truck proposed for the LRFD code and for the current DB 24 truck. The limit state function for fatigue failure is expressed as a function of various random variables that affect fatigue damage. Among these variables, the statistical parameters for the equivalent moment, the impact factor, and the loadometer were obtained by analyzing recently measured domestic traffic data, and the parameters for the fatigue strength, the girder distribution factor, and the headway factor were obtained from the measured data reported in literature. Based on the reliability analysis, the fatigue truck model for the LRFD code was proposed. After applying the proposed fatigue truck to the LRFD code, 16 composite plate and box girder bridges were designed based on the LRFD method, and the LRFD design results for the fatigue limit state were compared with those by the current KHBDC.

Damage assessment of shear connectors with vibration measurements and power spectral density transmissibility

  • Li, Jun;Hao, Hong;Xia, Yong;Zhu, Hong-Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.257-289
    • /
    • 2015
  • Shear connectors are generally used to link the slab and girders together in slab-on-girder bridge structures. Damage of shear connectors in such structures will result in shear slippage between the slab and girders, which significantly reduces the load-carrying capacity of the bridge. Because shear connectors are buried inside the structure, routine visual inspection is not able to detect conditions of shear connectors. A few methods have been proposed in the literature to detect the condition of shear connectors based on vibration measurements. This paper proposes a different dynamic condition assessment approach to identify the damage of shear connectors in slab-on-girder bridge structures based on power spectral density transmissibility (PSDT). PSDT formulates the relationship between the auto-spectral densities of two responses in the frequency domain. It can be used to identify shear connector conditions with or without reference data of the undamaged structure (or the baseline). Measured impact force and acceleration responses from hammer tests are analyzed to obtain the frequency response functions at sensor locations by experimental modal analysis. PSDT from the slab response to the girder response is derived with the obtained frequency response functions. PSDT vectors in the undamaged and damaged states can be compared to identify the damage of shear connectors. When the baseline is not available, as in most practical cases, PSDT vectors from the measured response at a reference sensor to those of the slab and girder in the damaged state can be used to detect the damage of shear connectors. Numerical and experimental studies on a concrete slab supported by two steel girders are conducted to investigate the accuracy and efficiency of the proposed approach. Identification results demonstrate that damages of shear connectors are identified accurately and efficiently with and without the baseline. The proposed method is also used to evaluate the conditions of shear connectors in a real composite bridge with in-field testing data.

Effect of Cross Beams on Live Load Distribution in Rolled H-beam Bridges (압연형강(H형강) 거더교의 가로보가 활하중 횡분배에 미치는 영향)

  • Yoon, Dong Yong;Eun, Sung Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, the effects of cross beams on the lateral distribution of live loads in composite rolled H-beam girder bridges, were investigated through three-dimensional finite element analysis. The parameters considered in this study were the inertial moment ratio between the main girder and the cross beam, the presence of the cross beam, and the number of cross beams. The live load lateral distribution factors were investigated through finite element analysis and the customary grid method. The results show that there was no difference between the bridge models with and without a cross beam. The cross beam of the beam and frame types also showed almost the same live load lateral distribution factors. However, the finite element analysis showed that the concrete slab deck plays a major role in the lateral distribution of a live load, and consequently, the effect of the cross beam is not so insignificant that it can be neglected.

Flexural Behavior of Continuous Composite Bridges with Precast Concrete Decks

  • Chung, Chul-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.625-633
    • /
    • 2003
  • For the construction of open-topped steel box girder bridges, prefabricated concrete slab could offer several advantages over cast-in-situ deck including good quality control, fast construction, and elimination of the formwork for concrete slab casting. However, precast decks without reinforcements at transverse joints between precast slabs should be designed to prevent the initiation of cracking at the joints, because the performance of the joint is especially crucial for the integrity of a structural system. Several prestressing methods are available to introduce proper compression at the joints, such as internal tendons, external tendons and support lowering after shear connection. In this paper, experimental results from a continuous composite bridge model with precast decks are presented. Internal tendons and external tendons were used to prevent cracking at the joints. Judging from the tests, precast decks in negative moment regions have the whole contribution to the flexural stiffness of composite section under service loads if appropriate prestressing is introduced. The validity of the calculation of a cracking load fur serviceability was presented by comparing an observed cracking load and the calculated value. Flexural behavior of the continuous composite beam with external prestressing before and after cracking was discussed by using the deflection and strain data.

Elastic Interactive Shear Buckling Behavior of Trapezoidally Corrugated Steel Webs (제형파형강판 복부판의 탄성 연성전단좌굴 거동)

  • Yi, Jong Won;Gill, Heung Bae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.707-715
    • /
    • 2005
  • Corrugated webs have been used for composite prestressed concrete box girder bridges. Innovative steel plate girders using corrugated webs have been proposed. It has been found that analytical and experimental researches conducted to determine the strength of trapezoidally corrugated webs can fail with respect to three different buckling modes: local, global, and interactive shear buckling. Shear buckling capacity equations based on classical and orthotropic plate buckling theories have been proposed,but these equations show some differences. In this paper, geometric parameters that influence interactive shear buckling behavior with interaction effects are identified via extensive bifurcation buckling analysis using the finite element meth.

An enhanced method of predicting effective thickness of corroded steel plates

  • Kaita, Tatsumasa;Appuhamy, J.M. Ruwan S.;Ohga, Mitao;Fujii, Katashi
    • Steel and Composite Structures
    • /
    • v.12 no.5
    • /
    • pp.379-393
    • /
    • 2012
  • Many steel bridge infrastructures in the world are getting older, and a large number of these structures are in need of maintenance, rehabilitation or replacement. Most of them are subjected to corrosion due to exposure to aggressive environmental conditions and inadequate maintenance, causing reduction of their carrying capacities. In order to have an adequate bridge management, it is of paramount importance to develop an efficient, accurate and rapid condition assessment method which can be used to make reliable decisions affecting the cost and safety. Therefore, a simple and accurate method of calculating remaining yield and tensile strength by using a concept of representative effective thickness with correlation of initial thickness and maximum corroded depth is proposed in this study, based on the results of many tensile coupon tests of corroded plates obtained from a steel plate girder with severe corrosion, used for about 100 years. Furthermore, a strength reduction diagram which will be very useful for bridge inspection engineers to make rational decisions about the maintenance management of aged steel bridge infrastructures is presented.

Research on anti-seismic property of new end plate bolt connections - Wave web girder-column joint

  • Jiang, Haotian;Li, Qingning;Yan, Lei;Han, Chun;Lu, Wei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • v.22 no.1
    • /
    • pp.45-61
    • /
    • 2016
  • The domestic and foreign scholars conducted many studies on mechanical properties of wave web steel beam and high-strength spiral stirrups confined concrete columns. Based on the previous research work, studies were conducted on the anti-seismic property of the end plate bolt connected wave web steel beam and high-strength spiral stirrups confined concrete column nodes applied with pre-tightening force. Four full-size node test models in two groups were designed for low-cycle repeated loading quasi-static test. Through observation of the stress, distortion, failure process and failure mode of node models, analysis was made on its load-carrying capacity, deformation performance and energy dissipation capacity, and the reliability of the new node was verified. The results showed that: under action of the beam-end stiffener, the plastic hinges on the end of wave web steel beam are displaced outward and played its role of energy dissipation capacity. The study results provided reliable theoretical basis for the engineering application of the new types of nodes.

Effect of stiffeners on steel plate shear wall systems

  • Rahmzadeh, Ahmad;Ghassemieh, Mehdi;Park, Yeonho;Abolmaali, Ali
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.545-569
    • /
    • 2016
  • Stiffeners have widely been used in lateral load resisting systems to improve the buckling stability of shear panels in steel frames. However, due to major differences between plate girders and steel plate shear walls (SPSWs), use of plate girder equations often leads to uneconomical and, in some cases, incorrect design of stiffeners. Hence, this paper uses finite element analysis (FEA) to describe the effect of the rigidity and arrangement of stiffeners on the buckling behavior of plates. The procedures consider transverse and/or longitudinal stiffeners in various practical configurations. Subsequently, curves and formulas for the design of stiffeners are presented. In addition, the influence of stiffeners on the inward forces subjected to the boundary elements and the tension field angle is investigated as well. The results indicate that the effective application of stiffeners in SPSW systems not only improves the structural behavior, such as stiffness, overall strength and energy absorption, but also leads to a reduction of the forces that are exerted on the boundary elements.

Effects of Interactions between the Concrete Deck and Steel Girders on the Behavior of Simply Supported Skew Bridges (단순 사교의 거동에 미치는 콘크리트 상판과 주형간의 상호작용 효과)

  • Moon Seong-Kwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.203-212
    • /
    • 2006
  • Although composite construction has many mechanical advantages over noncomposite construction, the design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction caused large stresses in the bridge deck. But there is somewhat difficulty to apply noncomposite construction in the field because of the structural problem such as the slip at the interface between the concrete deck and steel girders. In this study, the validity of the application of the composite construction to skew angles with large skew angles is investigated by analyzing effects of two interactions such as composite and noncomposite actions between the concrete deck and steel girders on the behavior of skew bridges. A series of parametric studies for the total 27 simply supported skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. The improvement of the behavior of composite skew bridges was examined by using the concept of the stiffness adjustment of bearings which I suggested in previous research. Results of analyses show that a more desirable behavior of skew bridges can be obtained from composite construction instead of noncomposite construction and the method of the stiffness adjustment of bearings results in a more rational and economical design of composite skew bridges and substructures.

A Study on the Design of Two-Span Continuous P.S. Composite Bridges (2경간 P.S. 연속합성보 교량의 설계에 관한 연구)

  • 구민세;신동기;이재혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.203-210
    • /
    • 1995
  • A construction method for continuous prestressed Composite Bridges(PCB's) is developed and successfully applied to the design of two-span continuous PCB's of five different span lengths. The construction of continuous PCB's goes through 17 different loading conditions. for each loading condition, the allowable stress design method is used to determine section properties. The analytical results of two-span continuous PCB's arc compared with those of simple PCB's. The comparison shows that the use of the proposed method can reduce 10-15 percents of the concrete section area and approximate 28 percents of the steel section area, as well as 5-8 percents of the girder height. The study indicates that the use of the proposed PCB's method can significantly reduce construction and maintenance costs of bridges.

  • PDF