• 제목/요약/키워드: Steel Beam

검색결과 3,069건 처리시간 0.03초

고세장비 미세채널 기반의 마이크로 히트파이프 설계 및 제조 (Design and Fabrication of a Micro-Heat Pipe with High-Aspect-Ratio Microchannels)

  • 오광환;이민규;정성호
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.164-173
    • /
    • 2006
  • The cooling capacity of a micro-heat pipe is mainly governed by the magnitude of capillary pressure induced in the wick structure. For microchannel wicks, a higher capillary pressure is achievable for narrower and deeper channels. In this study, a metallic micro-heat pipe adopting high-aspect-ratio microchannel wicks is fabricated. Micromachining of high-aspect-ratio microchannels is done using the laser-induced wet etching technique in which a focused laser beam irradiates the workpiece placed in a liquid etchant along a desired channel pattern. Because of the direct writing characteristic of the laser-induced wet etching method, no mask is necessary and the fabrication procedure is relatively simple. Deep microchannels of an aspect ratio close to 10 can be readily fabricated with little heat damage of the workpiece. The laser-induced wet etching process for the fabrication of high-aspect-ratio microchannels in 0.5mm thick stainless steel foil is presented in detail. The shape and size variations of microchannels with respect to the process variables, such as laser power, scanning speed, number of scans, and etchant concentration are closely examined. Also, the fabrication of a flat micro-heat pipe based on the high-aspect-ratio microchannels is demonstrated.

Evaluation of Friction Properties According to Normal Force and Direction of Wood Grain in Real Contact Area

  • Park, Chun-Young;Kim, Chul-Ki;Kim, Hyung-Kun;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권5호
    • /
    • pp.437-443
    • /
    • 2011
  • In Korea, there has been a traditional post and beam wood construction with large roof load. Because a large friction is generated in wooden joint or members, it is important to evaluate the friction between wood members according to wood direction. Because most of studies have been concerned with friction between wood and steel, excluding effect of real area of contact, there are a few studies on the friction between wood members. The object of this study was to evaluate friction or coefficient of friction according to normal force and real area of contact of wood. With Japanese larch (Larix kaempferi) test specimens, five steps of normal force and combinations of test were prepared. Results indicated that normal force had almost no affection on the friction, however there was difference about friction or coefficient of friction according to real contact conditions of wood grain and contact area.

스터드커넥터의 내화성능에 관한 연구 (Study on Fire Performance of Stud Connectors)

  • 김성배;한상훈;최승관
    • 한국화재소방학회논문지
    • /
    • 제23권4호
    • /
    • pp.59-66
    • /
    • 2009
  • 본 연구는 합성구조에 사용되는 스터드커넥터의 화재시 성능에 대한 연구이다. 스터드커넥터는 전단연결재로 가장 폭넓게 사용되고 있으며, 콘크리트와 강재를 일체화시켜 합성 성능을 확보한다. 스터드커넥터에 대한 상세 내화성능은 아직 명확한 자료가 없으며, 향후 성능설계에서 무피복 합성보 등에 대한 설계 자료로 요구 된다. 본 실험의 스터드커넥터 성능시험은 푸시 아웃 실험을 변형하여 특수 전기로와 결합 ISO 표준온도곡선을 기본으로 거동 성능실험을 수행하였으며, 화재 조건의 파괴 형상을 기반으로 성능 분석 방법을 제안하였다.

Composite Wood-Concrete Structural Floor System with Horizontal Connectors

  • SaRibeiro, Ruy A.;SaRibeiro, Marilene G.
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.61-67
    • /
    • 2015
  • The concept of horizontal shear connection utilization on wood-concrete beams intends to be an alternative connection detail for composite wood-concrete decks. The volume of sawn-wood is over three times more expensive than concrete, in Brazil. In order to be competitive in the Brazilian market we need a composite deck with the least amount of wood and a simple and inexpensive connection detail. This research project uses medium to high density tropical hardwoods managed from the Brazilian Amazon region and construction steel rods. The beams studied are composed of a bottom layer of staggered wood boards and a top layer of concrete. The wood members are laterally nailed together to form a wide beam, and horizontal rebar connectors are installed before the concrete layer is applied on top. Two sets of wood-concrete layered beams with horizontal rebar connectors (6 and 8) were tested in third-point loading flexural bending. The initial results reveal medium composite efficiency for the beams tested. An improvement on the previously conceived connection detail (set with six connectors) for the composite wood-concrete structural floor system was achieved by the set with eight connectors. The new layout of the horizontal rebar connectors added higher composite efficiency for the beams tested. Further analysis with advanced rigorous numerical Finite Element Modeling is suggested to optimize the connection parameters. Composite wood-concrete decks can attend a large demand for pedestrian bridges, as well as residential and commercial slabs in the Brazilian Amazon.

재생 굵은골재를 사용한 철근 콘크리트 보의 거동에 관한 실험연구 (An Experimental Study on the Behavior of Reinforced Concrete Beams using Recycled Coarse Aggregate)

  • 이명규;김광서;이근호;윤건호;정상화
    • 한국건축시공학회지
    • /
    • 제4권3호
    • /
    • pp.133-141
    • /
    • 2004
  • The object of this study is to investigate experimentally the shear behavior of reinforced concrete beams using recycled coarse aggregate. At first, the specimens are manufactured for the compressive strength of 210kgf/$\textrm{cm}^2$ with recycled coarse aggregate ratio of 0%, 20%, 40%, 60%, 80%, 100%, respectively. From the results, Reinforced concrete beams using recycled coarse aggregate were made with recycled coarse aggregate ratio of 0%, 20%, 40%, 60%, 80%, with stirrups and recycled coarse aggregate ratio of 0%, 20%, 40% without stirrups. The results of crack pattern and failure mode, load-displacement curve(center point and load point) and load-steel curve(compressive, tensile, stirrup) were analysed. It is concluded from the test that the shear behavior of recycled concrete beams is determined to have similar behavior of normal concrete beams. Therefore, from this study the application of recycled concrete to concrete structures may be possible. But, for using the recycled concrete widely, it is expected that the more studies on quality control, substitution ratio and mix design related with recycled concrete are necessary.

건축물 구조체의 낙뢰 전위 분포 특성에 관한 연구 (A Research about Transient Response at a Lightning Strike of Steel-Beam Building)

  • 조대훈;이기식;이광구;유청희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기설비전문위원
    • /
    • pp.122-126
    • /
    • 2004
  • 직격뇌가 높은 건축물에 치거나 인접 건물로부터 뇌전류가 유입되었을 때 잘못된 피뢰설비로 인한 피해는 매우 심각한 실정이다. 낙뢰가 치는 순간에 반도체와 같은 민감한 전자부품을 사용하는 전자 및 통신기기는 뇌전류로 인한 전자기장의 영향으로 오동작이 발생하거나 부품의 손상을 입기가 쉽다. 본 논문에서는 건축물 구조체에 직격뇌가 유입되었을 때 건축물 구조체 및 건물 주위에 나타나는 전위분포특성을 연구하였다. 본 논문에서 30m 높이 건축물의 상부 모서리와 중앙부 그리고 건축물 하부 모서리와 중앙부로 뇌전류가 유입된다고 가정하여 건축물의 전계분포특성을 시뮬레이션하였으며, 뇌전류는 2중 지수함수형태로 모의된 20kA 임펄스 서지 전류를 주입하였다. 뇌서지 전류의 주파수 특성은 Fast Fourier Transform(FFT)을 이용하여 얻었으며, 얻어진 주파수 값을 이용하여 건축물 구조체와 인접지역의 Scalar Potentials과 Electric Fields의 특성을 시뮬레이션하였다. 또한 철골 빔 건축물의 철골 빔에 직접 뇌전류가 유입되는 경우와 건물 하부의 접지전극에 뇌전류가 유입되는 경우로 분리 하여 연구하였다. 그 결과 뇌전류의 유입경로가 건축물의 모서리부분 보다는 중심부에 위치될 때 전위 및 전계 크기가 작았으며 건축 철골구조물보다 건축물 하부에 접지전극이 설치될 때 더 낮은 전계 값을 갖는 것을 확인하였다.

  • PDF

Fatigue life prediction of horizontally curved thin walled box girder steel bridges

  • Nallasivam, K.;Talukdar, Sudip;Dutta, Anjan
    • Structural Engineering and Mechanics
    • /
    • 제28권4호
    • /
    • pp.387-410
    • /
    • 2008
  • The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method in the time domain approach. The curved box-girder bridge has been numerically modeled using computationally efficient thin walled box-beam finite elements, which take into account the important structural actions like torsional warping, distortion and distortional warping in addition to the conventional displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process specified by a power spectral density (PSD) function. The linear damage accumulation theory has been applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has been compared with those found by estimating the PSD of response in frequency domain. The frequency domain method uses an analytical expression involving spectral moment characteristics of stress process. The effects of some of the important parameters on fatigue life of the curved box bridge have been studied.

Seismic performance of RC frames retrofitted with haunch technique

  • Akbar, Junaid;Ahmad, Naveed;Alam, Bashir;Ashraf, Muhammad
    • Structural Engineering and Mechanics
    • /
    • 제67권1호
    • /
    • pp.1-8
    • /
    • 2018
  • Shake table tests performed on five 1:3 reduced scale two story RC moment resisting frames having construction defects, have shown severe joint damageability in deficient RC frames, resulting in joint panels' cover spalling and core concrete crushing. Haunch retrofitting technique was adopted herein to upgrade the seismic resistance of the deficient RC frames. Additional four deficient RC frames were built and retrofitted with steel haunch; both axially stiffer and deformable with energy dissipation, fixed to the beam-column connections to reduce shear demand on joint panels. The as-built and retrofitted frames' seismic response parameters are calculated and compared to evaluate the viability of haunch retrofitting technique. The haunch retrofitting technique increased the lateral stiffness and strength of the structure, resulting in the increase of structure's overstrength. The retrofitting increased response modification factor R by 60% to 100%. Further, the input excitation PGA was correlated with the lateral roof displacement to derive structure response curve that have shown significant resistance of retrofitted models against input excitations. The technique can significantly enhance the seismic performance of deficient RC frames, particularly against the frequent and rare earthquake events, hence, promising for seismic risk mitigation.

Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory

  • Hadi, Amin;Nejad, Mohammad Zamani;Rastgoo, Abbas;Hosseini, Mohammad
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.663-672
    • /
    • 2018
  • This paper contains a consistent couple-stress theory to capture size effects in Euler-Bernoulli nano-beams made of three-directional functionally graded materials (TDFGMs). These models can degenerate into the classical models if the material length scale parameter is taken to be zero. In this theory, the couple-stress tensor is skew-symmetric and energy conjugate to the skew-symmetric part of the rotation gradients as the curvature tensor. The material properties except Poisson's ratio are assumed to be graded in all three axial, thickness and width directions, which it can vary according to an arbitrary function. The governing equations are obtained using the concept of minimum potential energy. Generalized differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the natural frequencies of TDFG nano-beam. At the end, some numerical results are performed to investigate some effective parameter on buckling load. In this theory the couple-stress tensor is skew-symmetric and energy conjugate to the skew-symmetric part of the rotation gradients as the curvature tensor.

Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks

  • Figueira, Diogo;Sousa, Carlos;Neves, Afonso Serra
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.593-605
    • /
    • 2018
  • A nonlinear finite element modeling approach is developed to assess the behavior of a dowel bar embedded on a single concrete block substrate, subjected to monotonic loading. In this approach, a discrete representation of the steel reinforcing bar is considered, using beam finite elements with nonlinear material behavior. The bar is connected to the concrete embedment through nonlinear Winkler spring elements. This modeling approach can only be used if a new constitutive model is developed for the spring elements, to simulate the deformability and strength of the concrete substrate. To define this constitutive model, an extensive literature review was conducted, as well as 3 experimental tests, in order to select the experimental data which can be used in the calibration of the model. Based on this data, an empirical model was established to predict the global dowel response, for a wide range of bar diameters and concrete strengths. This empirical model provided the information needed for calibration of the nonlinear Winkler spring model, valid for dowel displacements up to 4 mm. This new constitutive model is composed by 5 stages, in order to reproduce the concrete substrate response.