• Title/Summary/Keyword: Steam reforming

Search Result 344, Processing Time 0.032 seconds

A Study on the Evaporator Shape for the Heat Transfer Performance of Fuel Cell Reformer (연료전지 개질기용 증발기 열교환 성능을 위한 증발기 형상에 관한 연구)

  • Suh, Ho-Cheol;Kim, Kyu-Jun;Noh, Hyung-Chul;Park, Kyoung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.1
    • /
    • pp.108-114
    • /
    • 2011
  • Steam reformer was organized with steam reforming process and CO removing process. The steam reforming process needed high temperature, 600~900 $^{\circ}C$, for catalytic-reaction which was extract of hydrogen from steam and hydrocarbon. The effects of the evaporator configuration on its heat transfer characteristics were investigated both experimentally and numerically to pursue the miniaturization. In this study, three configurations were considered where the different structures were tested; empty, embossing and mesh filled. For the comparison of heat transfer performance of shape evaporator disk, numerical analysis using SC-Tetra code and experiment were carried out. In case of reformer system design, it should be considered heat transfer rate, differential pressure and fluid flow direction.

Hydrogen Generation Characteristics of SMART System with Inherent $CO_2/H_2$ Separation ($CO_2/H_2$ 원천분리 SMART 시스템의 수소생산특성)

  • Ryu, Ho-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.382-390
    • /
    • 2007
  • To check the feasibility of SMART(Steam Methane Advanced Reforming Technology) system, an experimental investigation was performed. A fluidized bed reactor of diameter 0.052m was operated cyclically up to 10th cycle, alternating between reforming and regeneration conditions. FCR-4 catalyst was used as the reforming catalyst and calcined limestone(domestic, from Danyang) was used as the $CO_2$ absorbent. Hydrogen concentration of 98.2% on a dry basis was reached at $650^{\circ}C$ for the first cycle. This value is much higher than $H_2$ concentration of 73.6% in the reformer of conventional SMR (steam methane reforming) condition. The hydrogen concentration decreased because the $CO_2$ capture capacity decreased as the number of cycles increased. However, the average hydrogen concentration at 10th cycle was 82.5% and this value is also higher than that of SMR. Based on these results, we could conclude that the SMART system can replace SMR system to generate pure hydrogen without HTS (high tempeature shift), LTS (low temperature shift) and $CO_2$ separation process.

Study on the Characterization of the Methane Stream Reforming in the High Pressure Using Reforming Catalyst (개질촉매를 이용한 고압에서 메탄 수증기 개질 특성연구)

  • 조종훈;백일현
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.145-153
    • /
    • 2003
  • In order to develop the carbonation process as a core technology of zero emission coal power plant, study on characterization of methane steam reforming (MSR) which is main reaction of this process was carried out. The effects of gas hourly space velocity (GHSV), steam/carbon (S/C) ratio and pressure in the MSR using reforming catalyst were investigated. The equilibrium composition of the gases produced in the MSR were obtained below GHSV 7,000 hr$\^$-1/. The operating conditions of carbonation process using hybrid reaction (MSR+CO$_2$ adsorption using CaO) were 700∼800$^{\circ}C$ and S/C ratio of 2.5∼3. The equilibrium mixture of gases composed of 75∼78% H$_2$ and 8∼9% CO$_2$ at atmospheric pressure and 60∼78% H$_2$ and 9∼l1% CO$_2$ at 1∼30 atm respectively under above operating conditions.

Effect of oxygen distribution for hot spot and carbon deposition minimization in a methane autothermal reforming reactor

  • Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Yong-Min;Park, Joong-Uen;Lim, Sung-Kwang
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1996-2000
    • /
    • 2008
  • In autothermal reforming reaction, oxygen to carbon ratio (OCR) and steam to carbon ratio (SCR) are significant factors, which control temperature and carbon deposition into the reactor. The OCR is more sensitive than the SCR to affect the temperature distribution and reforming efficiency. In conventional operation, hydrocarbon fuel, steam, and oxygen was homogeneously mixed and injected into the reactor in order to get hydrogen-rich gas. The temperature was abruptly raised due to fast oxidation reaction in the former part of the reactor. Deactivation of packed catalysts can be accelerated there. In the present study, therefore, the effect of the oxygen distribution is introduced and investigated to suppress the carbon deposition and to maintain the reactor in the mild operating temperature (e.g., $700{\sim}800^{\circ}C$). In order to investigate the effect numerically, the following models are adopted; heterogeneous reaction model and two-medium model for heat balance.

  • PDF

Analyzing Operational Efficiency of GTL Reforming Process by using Aspen Plus (Aspen Plus를 이용한 GTL Reforming 공정별 운전효율 비교)

  • Bae, Jihan;Kim, Yongheon;Kim, Jaeho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.143-143
    • /
    • 2010
  • GTL(Gas-to-Liquids)공정 중 합성가스 제조공정(Reforming Process)인 ATR(Auto-Thermal Reforming), SCR(Steam Carbon Reforming), POx(Partial Oxidation)의 시뮬레이션 연구를 수행하였다. Reforming 공정에서 생산된 합성가스는 GTL 합성유 제조공정인 FT(Fischer-Thropsch) 반응기로 주입되며, 합성유 생산에 최적의 효율을 보이는 H2/CO 비(합성가스에 포함된 반응물비)는 2.0으로 알려져 있다. FT공정은 합성가스를 원료로 고온 및 고압 반응을 거쳐 GTL 공정의 최종 생산품인 FT합성유를 제조하는 공정이다. 본 연구에서는 FT공정 효율 극대화를 위해 reforming 공정에서 생성되는 합성가스 내 H2/CO의 비를 2로 수렴토록 모사조건을 설정하였으며, 상기 조건을 만족하는 reforming 공정들의 운전 온도 및 feed 조성을 분석하고 비교하고자 한다. 현재 GTL 플랜트관련 산업계에 적용 혹은 주 연구대상인 reforming 공정으로는 ATR, SCR, POx 공정이 있다. ATR 공정은 $850{\sim}1100^{\circ}C$에서 메탄, 스팀 및 산소를 원료로 활용하여 H2 및 CO를 생산하는 공정으로 발열/흡열 반응이 상존하여 에너지 비용이 낮지만 공정구조 상 열회수설비 및 ASU(Air Separation Unit)이 필요하기에 CAPEX(초기설비 설치비용)가 높은 편이다. SCR공정은 CH4, Steam 및 CO2를 연료로 하기에 이산화탄소가 일정부분 포함된 가스전에도 적용이 가능하나 공정 운전 중 지속적으로 외부에서 열을 공급해야 하기에 에너지 투입비용이 높은편이며, 탄소침적의 문제가 있어 대용량 플랜트에는 적합하지 않다. POx공정은 약 $1,500^{\circ}C$의 고온에서 CH4가 O2에 의해 부분 산화되는 방식으로 촉매가 필요없어 설비비가 타 공정에 비해 저렴하나 생산가스의 H2/CO비가 다소 낮아 전체적인 GTL 공정효율이 저하되는 단점이 있다. 상기 세 공정은 GTL 산업계에서 실증 및 효율증대를 위해 주로 연구되는 공정이기에 본 연구의 분석대상으로 설정하였다. 본 연구에서는 상용공정모사기인 Aspen Plus를 활용하여 reforming 공정별로 FT합성공정의 최적 조건(H2/CO=2)을 만족하는 합성가스 생산조건 분석 및 비교를 수행할 예정이다. 운전조건인 공정 운전온도 및 feed 가스조성 등을 모사하기 위해 합성가스 reforming 공정을 모델링하고 공급유량 및 압력 등의 운전변수는 GTL국책과제 1단계 연구수행 결과를 토대로 선정하고자 한다. GTL공정의 경우, 설비의 운전조건이나 연료가스의 구성 및 유량에 따라 적합한 reforming 공정이 다르기에 본 시뮬레이션 결과를 향후 GTL 플랜트 공정모델 설계시 reforming 공정선정에 참고자료로 활용하고자 한다.

  • PDF

A Comparative Study of Commercial Catalysts for Methanol Steam Reforming (메탄올 수증기 개질반응에서의 상용촉매 비교연구)

  • Park, Jung-Eun;Park, Jae-Hyun;Yim, Sung-Dae;Kim, Chang-Soo;Park, Eun-Duck
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.21-27
    • /
    • 2011
  • The comparison work was conducted for the methanol steam reforming among commercial Cu-based catalysts, viz. ICI-M45, which is for the methanol synthesis, MDC-3 and MDC-7, which are for the water-gas shift reaction. The catalytic activity for the water-gas shift reaction was also compared over three catalysts. Among them, MDC-7 showed the highest methanol conversion and formation rate of hydrogen and carbon dioxide at 473 K for the methanol steam reforming. To find out any promotional effect between ICI-M45 and MDC-7, three different packing methods with these two catalysts were examined. However, no synergistic effect was observed. The catalytic activity for watergas shift reaction decreased in the following order: MDC-7 > MDC-3 > ICI-M45. The highest activity of MDC-7 for the methanol steam reforming as well as the water-gas shift reaction can be due to its high surface area, copper dispersion, and an adequate Cu/Zn ratio.

Efficiency Analysis of Compact Type Steam Reformer (컴팩트형 수증기 개질장치 효율분석)

  • Oh, Young-Sam;Song, Taek-Yong;Baek, Young-Soon;Choi, Lee-Sang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.304-312
    • /
    • 2002
  • In this study, the performance of the $5Nm^3/hr$ compact type steam reformer which was developed for application of fuel cell or hydrogen station was evaluated in terms of gas process efficiency. For these purposes, reforming efficiency and total efficiency with system load change were analyzed. The reforming efficiency was calculated from the total molar flow of hydrogen output over total fuel flow input to the reformer and the burner on the higher heating value(HHV). In the case of the total efficiency, recovered heat at the heat recovery exchanger was considered. From the results, it was known that system performance was stable, because methane conversion showed the a slight decline which is about 2% though increasing system load to full. Reforming efficiency was increased from 20% to 58%, respectively as increasing system load from 10% to 90%. It was found that total efficiency was higher then reforming efficiency because of terms of heat recovered. As a results, it was known that total efficiency was increased form 75% to 83% at the 10% and 90% system load, respectively. From these results, it is concluded that compact steam reformer which is composed of stacking plate-type reactors is suitable to on-site hydrogen generator or to fuel cell application because of quick start within 1 hr and good performance.

Hydrogen Production from Ethanol Steam Reforming over SnO2-K2O/Zeolite Y Catalyst

  • Lee, Jun-Sung;Kim, Ji-Eun;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1912-1920
    • /
    • 2011
  • The $SnO_2$ with a particle size of about 300 nm instead of Ni is used in this study to overcome rapid catalytic deactivation by the formation of a $NiAl_2O_4$ spinal structure on the conventional Ni/${\gamma}$-$Al_2O_3$ catalyst and simultaneously impregnated the catalyst with potassium (K). The $SnO_2-K_2O$ impregnated Zeolite Y catalyst ($SnO_2-K_2O$/ZY) exhibited significantly higher ethanol reforming reactivity that that achieved with $SnO_2$ 100 and $SnO_2$ 30 wt %/ZY catalysts. The main products from ethanol steam reforming (ESR) over the $SnO_2$-$K_2O$/ZY catalyst were $H_2$, $CO_2$, and $CH_4$, with no evidence of any CO molecule formation. The $H_2$ production and ethanol conversion were maximized at 89% and 100%, respectively, over $SnO_2$ 30 wt %-$K_2O$ 3.0 wt %/ZY at 600 $^{\circ}C$ for 1 h at a $CH_3CH_2OH:H_2O$ ratio of 1:1 and a gas hourly space velocity (GHSV) of 12,700 $h^{-1}$. No catalytic deactivation occurred for up to 73 h. This result is attributable to the easier and weaker of reduction of Sn components and acidities over $SnO_2-K_2O$/ZY catalyst, respectively, than those of Ni/${\gamma}$-$Al_2O_3$ catalysts.

Characteristics of Ni/3d Series Transition Metal/γ-Al2O3 Catalysts and their Hydrogen Production Abilities from Butane Steam Reforming

  • Lee, Jun-Su;Choi, Byung-Hyun;Ji, Mi-Jung;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3281-3289
    • /
    • 2011
  • The materials composed of the 3d series transition metals are introduced into the hydrocarbon steam-reforming reaction in order to enhance the $H_2$ production and abruptly depress the catalytic deactivation resulting from the strong sintering between the Ni component and the ${\gamma}-Al_2O_3$ support. The conventional impregnation method is used to synthesize the Ni/3d series metal/${\gamma}-Al_2O_3$ materials through the sequentially loading Ni source and the 3d series metal (Ti, V, Cr, Mn, Fe, Co, Cu, and Zn) sources onto the ${\gamma}-Al_2O_3$ support. The Mnloaded material exhibits a significantly higher reforming reactivity than the conventional Ni/${\gamma}-Al_2O_3$ and the other Ni/3d series metal/${\gamma}-Al_2O_3$ materials. Particularly the addition of Mn selectively improves the $H_2$ product selectivity by eliminating the formation of $CH_4$ and CO. The $H_2$ production is maximized at a value of 95% over Ni(0.3)/Mn(0.3)/${\gamma}-Al_2O_4$(1.0) with a butane conversion of 100% above $750^{\circ}C$ for up to 55 h.

Experimental study on self-sustaied $1kW_e$ liquid fuel reforming operation (자립형 $1kW_e$ 액체 연료 개질기 운전에 관한 연구)

  • Yoon, Sang-Ho;Bae, Gyu-Jong;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.503-506
    • /
    • 2008
  • Liquid hydrocarbon fuels, such as gasoline, kerosene, diesel and JP 8, can be good candidates for SOFC (solid oxide fuel cell) system fuel due to their high hydrogen density. Autothermal reforming (ATR) is suitable for liquid hydrocarbon fuel reforming because oxygen can decompose the aromatics in liquid fuel and steam can suppress the carbon deposition during catalytic reaction. The advantage of ATR is that it has a simple system construction due to exothermicity of ATR reaction. We control the exothermicity of reaction, make the reaction possible design a self-sustaining ATR reactor. A self-sustained 1kW-class kerosene autothermal reformer is introduced in this paper. The 1kW-class kerosene reformer was continuously operated for about 140 hours without degradation of reforming performance.

  • PDF