• 제목/요약/키워드: Steam pipe

검색결과 152건 처리시간 0.026초

히트파이프를 활용한 농업용 고효율난방기 및 스마트 제어시스템 (High-efficiency Agricultural Heater and Smart Control System Utilizing Heat Pipe)

  • 김응곤;임창균
    • 한국전자통신학회논문지
    • /
    • 제12권6호
    • /
    • pp.1151-1158
    • /
    • 2017
  • 히트파이프 일체형 고효율 난방기는 겨울철 시설원예 내 작물생육에 필수인 난방장치와 배기열 회수기를 일체화하여 배기열이 외부로 배출되기 전 미사용 에너지를 재이용하는 장치이다. 시설원예, 유리온실 등 점검을 통해 우리나라 농업용 난방기의 문제점을 파악하였고, 개선방향을 찾아 시설원예 및 하우스에 맞는 최적화된 농업용 고효율난방기 및 스마트 제어시스템을 제안하였다.

PGSFR BOP계통 배관 응력평가 적용방안 고찰 (Considerations of Stress Assessment Methodology for BOP Pipings of PGSFR)

  • 오영진;허남수;장영식
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.101-106
    • /
    • 2016
  • NSSS (Nuclear Steam Supply System) and BOP (Balance of Plant) design works for PGSFR (Prototype Gen-IV Sodium Fast Reactor) have been conducted in Korea. NSSS major components, e.g. reactor vessel, steam generator and secondary sodium main pipes, are designed according to the rule of ASME boiler and pressure vessel code division 5, in which DBA (Design by Analysis) methods are used in the stress assessments. However, there is little discussions about detail rules for BOP piping design. In this paper, the detail methodologies of BOP piping stress assessment are discussed including safety systems and non-safety system pipings. It is confirmed that KEPIC MGE(ASME B31.1) and ASME BPV code division 5 HCB-3600 can be used in stress assessments of non-safety pipes and class B pipes, respectively. However, class A pipe design according to ASME BPV code division 5 HBB-3200 has many difficulties applying to PGSFR BOP design. Finally, future development plan for class A pipe stress assessment method is proposed in this paper.

Identification of hydrogen flammability in steam generator compartment of OPR1000 using MELCOR and CFX codes

  • Jeon, Joongoo;Kim, Yeon Soo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1939-1950
    • /
    • 2019
  • The MELCOR code useful for a plant-specific hydrogen risk analysis has inevitable limitations in prediction of a turbulent flow of a hydrogen mixture. To investigate the accuracy of the hydrogen risk analysis by the MELCOR code, results for the turbulent gas behavior at pipe rupture accident were compared with CFX results which were verified by the American National Standard Institute (ANSI) model. The postulated accident scenario was selected to be surge line failure induced by station blackout of an Optimized Power Reactor 1000 MWe (OPR1000). When the surge line failure occurred, the flow out of the surgeline was strongly turbulent, from which the MELCOR code predicted that a substantial amount of hydrogen could be released. Nevertheless, the results indicated nonflammable mixtures owing to the high steam concentration released before the failure. On the other hand, the CFX code solving the three-dimensional fluid dynamics by incorporating the turbulence closure model predicted that the flammable area continuously existed at the jet interface even in the rising hydrogen mixtures. In conclusion, this study confirmed that the MELCOR code, which has limitations in turbulence analysis, could underestimate the existence of local combustible gas at pipe rupture accident. This clear comparison between two codes can contribute to establishing a guideline for computational hydrogen risk analysis.

수소 압축 개질공정의 정성적 위험성 평가 (Qualitative Risk Assessment of Hydrogen Compression Reforming Process)

  • 신단비;서두현;김태훈;이광원;이동민;김현기;홍성철
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.61-66
    • /
    • 2022
  • In order to introduce the hydrogen economy and increase supply, research in the field of hydrogen production is being actively conducted. Among the hydrogen production methods, the method of steam reforming from natural gas and producing it currently accounts for about 50% of the global hydrogen production. In the method of steam reforming process, hydrogen can be produced by adding a reformer to an existing natural gas supply pipe. Because of these advantages, it is evaluated as a realistic production method at present in Korea, where the city gas supply chain is well established. But there is concern in that it is highly likely to be installed in downtown areas and residential spaces. In this study, the risk of the process of steam reforming to produce hydrogen was reviewed.

개선된 SA508-Gr.1a 배관재의 파단전누설평가 여유도 분석 (Leak-Before-Break Assessment Margin Analysis of Improved SA508-Gr.1a Pipe Material)

  • 김만원;이요섭;신인환;양준석;김홍덕
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.42-48
    • /
    • 2020
  • The effect of improving the tensile and J-R fracture toughness properties of SA508 Gr.1a on the LBB margin for the main steam pipe is investigated. The material properties and microstructure images of the existing main steam piping material SA106 Gr.C used in domestic nuclear power plants and the newly selected material SA508 Gr.1a were compared. For each material, LBB margins were calculated and compared through finite element analysis and crack instability evaluation. The LBB margin of the improved SA508 Gr.1a is found to be greatly improved compared to that of the existing SA106 Gr.C and SA508 Gr.1a. This is because of the increased material's strength and J-R fracture toughness compared to the previous materials. In order to analyze the effect of physical property change on the LBB margin, the sensitivity of each LBB margin according to the variation of tensile strength and J-R fracture toughness was analyzed. The effect of the change in tensile strength was found to be greater than that of the change in fracture toughness. Therefore, an increase in strength significantly influenced the improvement of the LBB margin of the improved SA508 Gr.1a.

The Effect of Different Inflows on the Unsteady Hydrodynamic Characteristics of a Mixed Flow Pump

  • Yun, Long;Dezhong, Wang;Junlian, Yin;Youlin, Cai;Chao, Feng
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권2호
    • /
    • pp.138-145
    • /
    • 2017
  • The problem of non-uniform inflow exists in many practical engineering applications, such as the elbow suction pipe of waterjet pump and, the channel head of steam generator which is directly connect with reactor coolant pump. Generally, pumps are identical designs and are selected based on performance under uniform inflow with the straight pipe, but actually non-uniform suction flow is induced by upstream equipment. In this paper, CFD approach was employed to analyze unsteady hydrodynamic characteristics of reactor coolant pumps with different inflows. The Reynolds-averaged Naiver-Stokes equations with the $k-{\varepsilon}$ turbulence model were solved by the computational fluid dynamics software CFX to conduct the steady and unsteady numerical simulation. The numerical results of the straight pipe and channel head were validated with experimental data for the heads at different flow coefficients. In the nominal flow rate, the head of the pump with the channel head decreases by 1.19% when compared to the straight pipe. The complicated structure of channel head induces the inlet flow non-uniform. The non-uniformity of the inflow induces the difference of vorticity distribution at the outlet of the pump. The variation law of blade to blade velocity at different flow rate and the difference of blade to blade velocity with different inflow are researched. The effects of non-uniform inflow on radial forces are absolutely different from the uniform inflow. For the radial forces at the frequency $f_R$, the corresponding amplitude of channel head are higher than the straight pipe at $1.0{\Phi}_d$ and $1.2{\Phi}_d$ flow rates, and the corresponding amplitude of channel head are lower than the straight pipe at $0.8{\Phi}_d$ flow rates.

재료손상과 입계 미끄럼을 고려한 증기배관의 크리프 파단수명 및 변형률 예측 (Prediction of Creep Rupture Time and Strain of Steam Pipe Accounting for Material Damage and Grain Boundary Sliding)

  • 홍성호
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1182-1189
    • /
    • 1995
  • Several methods have been developed to predict the creep rupture time of the steam pipes in thermal power plant. However, existing creep life prediction methods give very conservative value at operating stress of power plant and creep rupture strain cannot be well estimated. Therefore, in this study, creep rupture time and strain prediction method accounting for material damage and grain boundary sliding is newly proposed and compared with the existing experimental data. The creep damage evolves by continuous cavity nucleation and constrained cavity growth. The results showed good correlation between the theoretically predicted creep rupture time and the experimental data. And creep rupture strain may be well estimated by using the proposed method.

내마모성을 갖는 고속 분립체 이송용 곡관의 형상 설계 (Design of Anti-abrasive curved ducts for high-velocity gas-solid flow)

  • 권동구;김윤제
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2000년도 춘계 학술발표회 논문집
    • /
    • pp.229-235
    • /
    • 2000
  • A study on the improvement of anti-abrasion nature of curved ducts for high-velocity gas-solid flow which are typically equipped in a coal-burned steam power plant has been investigated numerically and experimentally. To reduced the abrasion of pipe by particle, we have tried to form the vortex flow field in the region where flow changes its direction , modelled with two different shapes. 22.5$^{\circ}$and 90$^{\circ}$ elbows. the governing equations for three -dimensional , turbulent flow fields are discretized by FVM and solved bySIMPLE algorithm . From the numerical analysis, the new designed elbows for reducing abrasion have been developed. Numerical results are compared with the experimental abrasion data which are obtained from one of the operating coal burned steam power plants in Korea. Comparison of these results show that the developed elbows have much more durability than the original one.

  • PDF

원전 내 배관의 증기 누설 사고 시 누설 탐지 포집/이송 시스템 예비 해석 (Preliminary Analysis of a Sampling and Transportation System for Leak Detection during Steam Leak Accident of a Pipe in Nuclear Power Plants)

  • 최대경;최청열;권태순;어동진
    • 한국압력기기공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.25-34
    • /
    • 2020
  • As leakage in nuclear power plants could cause a variety of problems, it is very critical to monitor leakage from the safety point of view. Accordingly, a new type of leak detection system is currently being developed and flow characteristics of the sampling and transportation system are investigated by using numerical analysis as a part of the development process in this study. The results showed that the steam mass fraction varied according to the effect of the gap between the insulation and piping component, transportation velocity, and material properties of porous media during the sampling and transportation process. The results of this study should be useful for understanding flow characteristics of the sampling and transportation system and its design and application.