• Title/Summary/Keyword: Steam pipe

Search Result 152, Processing Time 0.022 seconds

Evaluation of Blast Wave and Pipe Whip Effects According to High Energy Line Break Locations (고에너지배관 파단위치에 따른 배관휩과 충격파의 영향 평가)

  • Kim, Seung Hyun;Chang, Yoon-Suk;Choi, Choengryul;Kim, Won Tae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.54-60
    • /
    • 2017
  • When a sudden rupture occurs in high energy lines, ejection of inner fluid with high temperature and pressure causes blast wave as well as thrust forces on the ruptured pipe itself. The present study is to examine pipe whip behaviors and blast wave phenomena under postulated pipe break conditions. In this context, typical numerical models were generated by taking a MSL (Main Steam Line) piping, a steam generator and containment building. Subsequently, numerical analyses were carried out by changing break locations; one is pipe whip analyses to assess displacements and stresses of the broken pipe due to the thrust force. The other is blast wave analyses to evaluate the broken pipe due to the blast wave by considering the pipe whip. As a result, the stress value of the steam generator increased by about 7~21% and von Mises stress of steam generator outlet nozzle exceeded the yield strength of the material. In the displacement results, rapid movement of pipe occurred at 0.1 sec due to the blast wave, and the maximum displacement increased by about 2~9%.

SIMULATION OF THERMAL STRATIFICATION IN INLET NOZZLE OF STEAM GENERATOR

  • Ji, Joon-Suk;Youn, Bum-Su;Jeong, Hyun-Chul;Kim, Sang-Nyung
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • Due to thermal hydraulics phenomena, such as thermal stratification, various events occur to the parts of a nuclear power plant during their lifetimes: e.g. cracked and dislocated pipes and thermally fatigued, bent, and damaged supports. Due to the operational characteristics of the parts of the steam generator feedwater inlet horizontal pipe, thermal stratification takes place particularly frequently. However, the thermal stress due to thermal stratification at the steam generator feedwater inlet horizontal pipe was not reflected in the design stage of old plants(Kori Unit No.1, 2, 3 and 4, Yeonggwang Unit No. 1 and 2, and Uljin Unit No. 1 and 2; referred to as old-style power plants hereinafter). Accordingly, a verification experiment was performed for thermal stratification in the horizontal inlet nozzle steam generator of old-style plants. If thermal stratification occurred in the horizontal pipe of an old-style power plant, numerical analysis of the temperature distribution of the pipes and fluids was conducted. The temperature distributions were compared at the curved part of the pipe and the horizontal pipe before and after the installation of the improved thermal sleeves designed to alleviate thermal stress due to thermal stratification. The thermal stress reduction measure was proven effective at the steam generator inlet horizontal pipe and the curved part of the pipe.

Methods and Systems for High-temperature Strain Measurement of the Main Steam Pipe of a Boiler of a Power Plant While in Service

  • Guang, Chen;Qibo, Feng;Keqin, Ding
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.770-777
    • /
    • 2016
  • It has been a challenge for researchers to accurately measure high temperature creep strain online without damaging the mechanical properties of the pipe surface. To this end, a noncontact method for measuring high temperature strain of a main steam pipe based on digital image correlation was proposed, and a system for monitoring of high temperature strain was designed and developed. Wavelet thresholding was used for denoising measurement data. The sub-pixel displacement search algorithm with curved surface fitting was improved to increase measurement accuracy. A field test was carried out to investigate the designed monitoring system of high temperature strain. The measuring error was less than $0.4ppm/^{\circ}C$, which meets actual measurement requirements for engineering. Our findings provide a new way to monitor creep damage of the main steam pipe of a boiler of an ultra-supercritical power plant in service.

Life Evaluation of Long-time Used 1Cr-0.5Mo Main Steam Pipe (장기사용된 1Cr-0.5Mo 주증기관의 수명평가)

  • 백수곤;홍성인
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 1998
  • Most fossil power plants and many critical components will be approaching the end of their nominal design life. At the same time, utilities are finding it economically attractive to extend the use of these plants for several more years, Especially Main steam pipe that operated under high temperature and pressure, often under the more severe operating conditions associated with cycling duty, is most important pipe system and critical component in fossil power plant. To extend the viability of older pipe system and to improve the operation and maintenance reliability, some technologies of precise diagnosis and life management have evolved out of the necessity. The purpose of this study is to descrive the related technologies and show the example of one power plants. The purpose of this study is to descrive the related technologies and show the example of one power plants. The stress analysis was done using ANSYS FEM Code. The branch area from main steam to turbine was the high stressed zone. To evaluate the degradation of the pipe material, replica, visual check, magnetic test, hardness test were done at the welding spot. The degradation level of welding point was E/F, so the remaining life of the welded area was about 0-25%.

  • PDF

Development of the High-quality Coating System for the Steam Pipe of Ship (선박 스팀파이프용의 고내구성 도장 사양 개발 연구)

  • Lee, Sung-Kyun;Baek, Kwang-Ki;Hwang, Dong-Un;Song, Eun-Ha
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.46-52
    • /
    • 2006
  • For ships, heat resistant coating is applied on the aluminized steel pipe systems dealing with high temperature steam over $200^{\circ}C$. The coatings on these steam pipes should retain both heat resistance and anti-corrosion properties to provide long-term resistance against coating defects (rust, delamination and crack) under the harsh outdoor environment including repeated seawater wetting and condensation. Thus, it is important to improve the coating qualities and to reduce maintenance works for these steam pipe systems. In this study, five different commercial heat resistant coatings (A, B, C, D, E) were selected for evaluation. Various physical properties of these coatings were evaluated on the coatings applied on the aluminized steam pipes. FT-IR analysis was also employed to identify the factors contributing the degree of heat resistance and durability of each coating material. The results indicated that the heat resistance capacity of coatings increased with the increase of silicon content as well as the decrease of substituent content. Both products C and D showed the best coating qualifies, which can be standard coating systems for future steam pipe areas.

  • PDF

Failure Analysis of an Inlet Pipe of a Governor Valve in a Steam Turbine of a District Heating System (지역난방 증기 터빈 내 조속기 밸브 Inlet pipe 파손 원인 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2022
  • The objective of this study was to perform failure analysis of an inlet pipe located in a governor valve of a steam turbine in a district heating system. During the operation, the temperature of the governor valve was increased to as high as ~500 ℃, which induced thermal expansion of the inlet pipe along both axial and radial directions. While the inlet pipe did not have contact with the valve seat, the side plane of the upside was constrained by the casing part, which led the inlet pipe to experience stress field in the form of fatigue and creep. The primary crack was initiated at about 30 mm below the top where the complex stress field was anticipated. These results suggest that the main failure mechanism is a combination of thermal fatigue and creep during the operation supported by the observation of apparent beach marks on the fracture surface and pores near the cracks, respectively.

Analytical Study on the Discharge Transients of a Steam Discharging Pipe (증기방출배관의 급격과도현상에 대한 해석적 연구)

  • 조봉현;김환열;강형석;배윤영;이계복
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.202-208
    • /
    • 1998
  • As in the other industrial processes, a nuclear power plant involves a steam relieving process through which condensable steam is discharged and condensed in a subcooled pool. An analysis of steam discharge transients was carried out using the method of characteristics to determine the flow characteristics and dynamic loads of piping that are used for structural design of the piping and its supports. The analysis included not only the steam flow rate but also the flow rates of the air and water which originally exist in the pipe. The analytical model was developed for a uniform pipe with friction through which the flow was discharged into a suppression pool. Including the combinations of system elements such as reservoir, valve and branching pipe lines. The piping flow characteristics and dynamic loads were calculated by varying system pressure, pipe length, and submergence depth. It was found that the dynamic load, water clearing time and water clearing velocity at the water/air interface were dependent not only on the system pressure and temperature but also on the pipe length and submergence depth.

  • PDF

Structural Integrity Evaluation of Large Main Steam Piping by Water Hammering (수격 현상에 근거한 대형 주증기관의 구조건전성 평가)

  • Jo, Jong-Hyun;Lee, Young-Shin;Kim, Yeon-Whan;Jin, Hai Lan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1103-1108
    • /
    • 2012
  • A main steam pipe system is a branch pipe that connects a boiler with a turbine. Water hammering analysis is very important for limiting the damage caused to pipe systems by operation conditions. Water hammering created by an unsteady flow in pipeline systems can cause excessive change in pressure, vibration, and noise. The main steam pipe structure should be designed to safely maintain the pressure pulsation and several vibrations under operation environments. This study evaluated the structural integrity of a main steam pipe during suspended and normal operation by using the ASME fatigue life methodology and finite element analysis. In the analysis, water hammering was used for transient analysis. The calculated alternating stress and fatigue stress were compared with the applicable limits of ASME fatigue life. All the evaluation results satisfied the requirements of the ASME fatigue life.

Development of On-line Displacement Monitoring System for High Temperature Steam Pipe of Fossil Power Plant (화력발전소 고온 증기배관 실시간 변위감시 시스템 개발)

  • Lee Young Shin;Hyun Jung Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.83-89
    • /
    • 2005
  • Most domestic fossil power plants have exceeded 100,000 hours of operation with the severe operating condition. Among the critical components of fossil power plant, high temperature steam pipe systems have had a many problems and damage from unstable displacement behavior because of frequent start up and shut down. In order to prevent the serious damage and failure of the critical pipe system in fossil power plants, 3-dimensional displacement measurement system was developed for the on-line monitoring. Displacement measurement system was developed with a use of a LVDT type sensor and two rotary encoder type sensors. This system was installed and operated on the real power plant successfully.

A Study on the Application of Phased Array Ultrasonic Testing to Main Steam Line in Nuclear Power Plants (원전 주증기배관 웰더렛 용접부 위상배열초음파검사 적용연구)

  • Lee, Seung-Pyo;Kim, Jin-Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • KSNPs(Korea Standard Nuclear Power Plant) have been applied the break exclusion criteria to the high energy lines passing through containment penetration area to ensure that piping failures would not cause the loss of containment isolation function, and to reduce the resulting dynamic effects. Systems with the criteria are the Main Steam system, Feed Water system, Steam Generator Blowdown system, and Chemical & Volume Control system. In accordance with FSAR(Final Safety Analysis Report), a 100% volumetric examination by augmented in-service inspection of all pipe welds appled the break exclusion criteria is required for the break exclusion application piping. However, it is difficult to fully satisfy the requirements of inspection because 12", 8" and 6" weldolet weldments of Main Steam pipe line have complex structural shapes. To resolve the difficulty on the application of conventional UT(Ultrasonic Testing) technique, realistic mock-ups and UT calibration blocks were made. Simulations of conventional UT were performed utilizing CIVA, a commercial NDE(Nondestructive Examination) simulation software. Phased array UT experiments were performed through mock-up including artificial notch type flaws. A phased array UT technique is finally developed to improve the reliability of ultrasonic test at main steam line pipe to 12", 8" and 6" branch connection weld.