• 제목/요약/키워드: Steam oxidation

검색결과 142건 처리시간 0.026초

니켈 섬유 매트 촉매를 사용한 바이오가스 수증기개질 반응 (Steam Reforming of Biogas on Nickel Fiber Mat Catalysts)

  • ;김용민;윤창원;남석우
    • 에너지공학
    • /
    • 제20권3호
    • /
    • pp.252-258
    • /
    • 2011
  • Nickel fiber mat was investigated as a potential structured catalyst for steam reforming of biogas in the temperature range of $600-700^{\circ}C$. The activity of as-received catalyst was very low owing to the smooth surface of fibers. Pretreatment of the catalyst by oxidation followed by reduction under methane partial oxidation condition significantly improved the catalytic activity, although degradation of the activity was found during the reaction due to oxidation and sintering. This deactivation was retarded by supplying additional hydrogen in the inlet gases or by coating $CeO_2$ over the catalyst surfaces.

대기압 플라즈마를 이용한 메탄 개질 반응 (Methane Reforming Using Atmospheric Plasma Source)

  • 이대훈;김관태;차민석;송영훈;김동현
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.64-68
    • /
    • 2005
  • Methane reforming processes to obtain hydrogen were investigated experimentally by using atmospheric plasma source. Among possible reforming processes, such as a $CO_2$ reforming(dry reforming), a partial oxidation (POx), a steam reforming(SR), and a steam reforming with oxygen(SRO or auto-thermal reforming), partial oxidation and the steam reforming with oxygen were considered. We choose a rotating arc plasma as an atmospheric plasma source, since it shows the best performances in our preliminary tests in terms of a methane conversion, a hydrogen production, and a power consumption. Then, the effects of a feeding flow-rate, an electrical power input to a plasma reaction, an $O_2/C$ ratio and a steam to carbon ratio in the case of SRO on the reforming characteristics were observed systematically. As results, at a certain condition almost 100% of methane conversion was obtained and we could achieve the same hydrogen production rate by consuming a half of electrical power which was used by the best results for other researchers.

  • PDF

HIGH TEMPERATURE OXIDATION OF NB-CONTAINING ZR ALLOY CLADDING IN LOCA CONDITIONS

  • Chuto, Toshinori;Nagase, Fumihisa;Fuketa, Toyoshi
    • Nuclear Engineering and Technology
    • /
    • 제41권2호
    • /
    • pp.163-170
    • /
    • 2009
  • In order to evaluate high-temperature oxidation behavior of the advanced alloy cladding under LOCA conditions, isothermal oxidation tests in steam were performed with cladding specimens prepared from high burnup PWR fuel rods that were irradiated up to 79 MWd/kg. Cladding materials were $M5^{(R)}$ and $ZIRLO^{TM}$, which are Nb-containing alloys. Ring-shaped specimens were isothermally oxidized in flowing steam at temperatures from 1173 to 1473 K for the duration between 120 and 4000s. Oxidation rates were evaluated from measured oxide layer thickness and weight gain. A protective effect of the preformed corrosion layer is seen for the shorter time range at the lower temperatures. The influence of pre-hydriding is not significant for the examined range. Alloy composition change generally has small influence on oxidation in the examined temperature range, though $M5^{(R)}$ shows an obviously smaller oxidation constant at 1273 K. Consequently, the oxidation rates of the high burnup $M5^{(R)}$ and $ZIRLO^{TM}$ cladding are comparable or lower than that of unirradiated Zircaloy-4 cladding.

Study on the Microstructural Degradation of the Boiler Tubes for Coal-Fired Power Plants

  • Yoo, Keun-Bong;He, Yinsheng;Lee, Han-Sang;Bae, Si-Yeon;Kim, Doo-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권1호
    • /
    • pp.25-31
    • /
    • 2018
  • A boiler system transforms water to pressured supercritical steam which drives the running of the turbine to rotate in the generator to produce electricity in power plants. Materials for building the tube system face challenges from high temperature creep damage, thermal fatigue/expansion, fireside and steam corrosion, etc. A database on the creep resistance strength and steam oxidation of the materials is important to the long-term reliable operation of the boiler system. Generally, the ferritic steels, i.e., grade 1, grade 2, grade 9, and X20, are extensively used as the superheater (SH) and reheater (RH) in supercritical (SC) and ultra supercritcal (USC) power plants. Currently, advanced austenitic steel, such as TP347H (FG), Super304H and HR3C, are beginning to replace the traditional ferritic steels as they allow an increase in steam temperature to meet the demands for increased plant efficiency. The purpose of this paper is to provide the state-of-the-art knowledge on boiler tube materials, including the strengthening, metallurgy, property/microstructural degradation, oxidation, and oxidation property improvement and then describe the modern microstructural characterization methods to assess and control the properties of these alloys. The paper covers the limited experience and experiment results with the alloys and presents important information on microstructural strengthening, degradation, and oxidation mechanisms.

PEMFC Operation Connected with Methanol Reformer System

  • Lee, Jung-Hyun;Park, Sang-Sun;Shul, Yong-Gun;Park, Jong-Man;Kim, Dong-Hyun;Kim, Ha-Suck;Yoo, Seung-Eul
    • Carbon letters
    • /
    • 제9권4호
    • /
    • pp.303-307
    • /
    • 2008
  • The studies on integrated operation of fuel cell with fuel processor are very essential prior to its commercialization. In this study, Polymer Electrolyte Membrane Fuel Cell (PEMFC) was operated with a fuel processor, which is mainly composed of two parts, methanol steam reforming reaction and preferential oxidation (PROX). In fuel processor, ICI 33-5 (CuO 50%, ZnO 33%, $Al_2O_3$ 8%, BET surface area: $66\;m^2g^{-1}$) catalyst and CuO-$CeO_2$ catalyst were used for methanol steam reforming, preferential oxidation (PROX) respectively. PEMFC was operated by hydrogen fuel generated from fuel processor. The resulting gas from PROX reactor is used to operate PEMFC equipped with our prepared anode and cathode catalyst. PtRu/C catalyst gives more tolerance to CO.

Microstructural characterization of accident tolerant fuel cladding with Cr-Al alloy coating layer after oxidation at 1200 ℃ in a steam environment

  • Park, Dong Jun;Jung, Yang Il;Park, Jung Hwan;Lee, Young Ho;Choi, Byoung Kwon;Kim, Hyun Gil
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2299-2305
    • /
    • 2020
  • Zr alloy specimens were coated with Cr-Al alloy to enhance their resistance to oxidation. The coated samples were oxidized at 1200 ℃ in a steam environment for 300 s and showed extremely low oxidation when compared to uncoated Zr alloy specimens. The microstructure and elemental distribution of the oxides formed on the surface of Cr-Al alloys have been investigated by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). A very thin protective layer of Cr2O3 formed on the outer surface of the Cr-Al alloy, and a thin Al2O3 layer was also observed in the Cr-Al alloy matrix, near the surface. Our results suggest that these two oxide layers near the surface confers excellent oxidation resistance to the Cr-Al alloy. Even after exposure to a high temperature of 1200 ℃, inter-diffusion between the Cr-Al alloy and the Zr alloy occurred in very few regions near the interface. Analysis of the inter-diffusion layer by high-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) measurement confirmed its identity as Cr2Zr.

TGA를 이용한 Fe2O3/ZrO2의 환원/물 분해/공기산화 kinetic 연구 (Kinetics Study on the Reduction with Methane, Oxidation with Water and Oxidation with Air of Fe2O3/ZrO2 Using TGA)

  • 남현우;강경수;배기광;김창희;조원철;김영호;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.168-177
    • /
    • 2011
  • A set of kinetics study on the reduction with $CH_4$, oxidation with steam and oxidation with air was performed for $Fe_2O_3/ZrO_2$. $Fe_2O_3/ZrO_2$ was prepared by aerial oxidation method. The reactivity experiments were performed in a thermogravimetric analyzer (TGA) with different reacting gas concentrations and temperatures. The obtained activation energy of reduction by methane, oxidation by water and oxidation by air are 219 kJ/mol, 238 and 20 respectively.

증기발생기 세정폐액 처리 공정 평가 (Evaluation on Decomposition Processes of Laundry wastewater produced from Steam Generator)

  • 강덕원;이홍주;최영우;이두호
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.78-82
    • /
    • 2003
  • 국내 원전에서 증기발생기 세정 후 발생되는 Fe-EDTA 함유 폐액 처리를 위한 초임계수 산화공정 (Supercritical Water Oxidation Process), 광촉매 산화 공정 (Photocatalyst Oxidation Process) 및 DBD 상온 플라즈마 공정 (Dielectric Barrier Discharge Atmospheric Pressure Plasma Process)이 평가되었다. 초임계수 산화 공정에 의해 99.98 %이상의 EDTA 전환율을 나타내어 EDTA 처리를 위한 효과적인 반응공정임을 확인하였으나 공정의 안정성, 부식 방지대책 등이 마련되어야 할 것으로 판단된다. 광촉매산화공정으로는 10 % 정도의 낮은 EDTA전환율을 보여 세정폐액 처리 공정으로는 부적합한 것으로 나타났다. DBD를 이용한 Methylene Blue 분해 결과 저 에너지 소비율로 높은 유기물 분해 효율을 얻을 수 있었으나 실 EDTA 공정에의 적용 및 공정 규모 확장 등에 대한 향후 연구 평가가 필요한 것으로 사료된다.

  • PDF

노내 손상 핵연료의 산화거동 및 핵연료 산화가 핵분열기체 방출에 미치는 효과 (Oxidation Kinetics of $UO_2$ Pellets in Defective Fuel Rods and Its Effect on Fission Gas Release)

  • Koo, Yang-Hyun;Sohn, Dong-Seong;Yoon, Young-Ku
    • Nuclear Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.90-99
    • /
    • 1994
  • 손상 핵연료에서 발생하는 주요한 현상중의 하나는 수중기의 분해로 갭에 존재하는 산소에 의해 $UO_2$$UO_{2+}$x/로 산화되고, 이로 인해 결정립내에서의 핵분열기체 확산계수가 증가하여 결과적으로 핵분열 기체의 방출이 증대하는 현상이다. 본 논문은 일반적인 원자로 운전 조건하에서 원자로 및 손상 핵연료의 운전조건을 고려하여 소결체의 산화거동을 모사하고 이를 바탕으로 소결체 산화가 핵분열기체의 방출 중대에 미치는 영향을 분석하였다. 소결체 산화거동은 갭에는 150기압의 포화된 순수한 수증기만이 존재한다는 가정하에 분석하였고, 산화에 의한 핵분열기체의 방출 증대 효과를 정량적으로 분석하기 위해 방출중대 인자를 도입하였다. 실험 치와 비교한 결과 방출증대 인자는 소결체 산화에 의한 핵분열기체의 방출증대 효과를 잘 예측하였다.

  • PDF