• 제목/요약/키워드: Steam generation rate

Search Result 59, Processing Time 0.027 seconds

Preliminary Structural Sizing of the Co-axial Double-tube Type Primary Hot Gas Duct for the Nuclear Hydrogen Reactor (수소생산용 원자로에서 동심축 이중관형 1차 고온가스덕트의 예비 구조정산)

  • Song, Kee-nam;Kim, Y-W
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation. The VHTR can produce hydrogen from heat and water by using a thermo-chemical process or from heat, water, and natural gas by steam reformer technology. A co-axial double-tube primary hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the VHTR. In this study, a preliminary design analysis for the primary HGD of the nuclear hydrogen system was carried out. These preliminary design activities include a determination of the size, a strength evaluation and an appropriate material selection. The determination of the size was undertaken based on various engineering concepts, such as a constant flow velocity model, a constant flow rate model, a constant hydraulic head model, and finally a heat balanced model.

  • PDF

Design of QFT controller of superconductor flywheel energy storage system for load frequency control

  • Lee, J.P.;Kim, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • In this paper, the Superconductor flywheel energy storage system (SFESS) was used for the load frequency control (LFC) of an interconnected 2 area power system. The robust SFESS controller using quantitative feedback theory (QFT) was designed to improve control performance in spite of parameter uncertainty and unexpected disturbances. An overlapping decomposition method was applied to simplify SFESS controller design for the interconnected 2 area power system. The model for simulation of the interconnected 2 area power system included the reheat steam turbine, governor, boiler dynamics and nonlinearity such as governor deadband and generation rate constraint (GRC). To verify robust performance of proposed SFESS controller, dynamic simulation was performed under various disturbances and parameters variation of power system. The results showed that the proposed SFESS controller was more robust than the conventional method.

A Study for Developing the Thermal Dehydrator (고효율 열 탈수장치 개발에 관한 연구)

  • Lee, Jung-Eun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.2 s.23
    • /
    • pp.35-40
    • /
    • 2004
  • A generation rate of sludge in Korea had increased dramatically about $200\%$ for a decade. A requirement for high efficiency dewatering system being possible to produce the low water content cake have suggested due to the appearance of commercial and social problems about handling of dewatered cake. The conventional dewatering system with mechanical compression device was not suitable to produce the low water content cake and didn't cope with lots of requirements. Therefore, this paper was to develop the high efficient filter press with the compressive and heating forces through the heating plate to be built between membrane fillet plates. It is possible to produce the low water content cake and improve the dewatering rate, so this equipment positively coped with several types of problems related to the sludge dewatering. The plate heated by heat transfer materials such as steam, hot water and thermo-oil made the sludge make the residual moisture within the cake to discharge easily and to improve the dewatering efficiency of equipment. The pilot scale experiment with 500kg of cake production showed that the dewatering efficiency determined by the final water content and dewatering velocity was improved $30\%$ more than the conventional dewatering equipment.

Performance Analysis of a Gas Turbine for Power Generation Using Syngas as a Fuel (Syngas를 연료로 사용하는 발전용 가스터빈의 성능해석)

  • Lee, Jong-Jun;Cha, Kyu-Sang;Sohn, Jeong-Lak;Joo, Yong-Jin;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.54-61
    • /
    • 2008
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increases the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition.

A Study for Developing the Thermal Dehydrator (고효율 열 탈수장치 개발에 관한 연구)

  • Lee, Jung-Eun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.278-283
    • /
    • 2003
  • A generation rate of sludge in Korea had increased dramatically about 200 % for a decade. A requirement for high efficiency dewatering system being possible to produce the low water content cake have suggested due to the appearanceof commercial and social problems about handling of dewatered cake. The conventional dewatering system with mechanical compression device was not suitable to produce the low water content cake and didn'tcope with lots of requirements. Therefore, this paper was to develop the high efficient filter press with the compressive and heating forces through the heating plate to be built between membrane filter plates. It is possible to produce the low water content cake and improve the dewatering rate, so this equipment positively coped with several types of problems related to the sludge dewatering. The plate heated by heat transfer materials such as steam, hot water and thermo-oil made the sludge make the residual moisture within the cake to discharge easilyand to improve the dewatering efficiency of equipment. The pilot scale experiment with 500kg of cake production showed that the dewatering efficiency determined by the final water content and dewatering velocity was improved 30% more than the conventional dewatering equipment.

  • PDF

Evaluation of Economic Feasibility of Power Generation System using Waste Woody Biomass in a CFBC Plant (순환유동층연소로에서 폐목질계 바이오매스를 이용한 발전 시스템의 경제성 평가)

  • Kim, Sung-June;Nam, Kyung-Soo;Lee, Jae-Sup;Seo, Seong-Seok;Lee, Kyeong-Ho;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • Economic feasibility of power generation system using waste woody biomass in a circulating fluidized bed combustor has been investigated. Effects of important variables such as capital investment, cost of waste wood, certified emission reduction(CER), system marginal price(SMP) on the benefit of business have been analyzed. Internal rate of return(IRR) was predicted as 16.67%, which implicates the business is promising based on the assumptions such as SMP of 99 Won/kWh, capital cost of 10.65 billion won, and complimentary providing of waste wood. Major factors affecting the benefit of business were as follows; system marginal price, operational rate, capital investment, expenditure of waste wood, certified emission reduction. In addition, it must be necessary to consider CHP power plant providing steam as one of the means to diversify sales network, for the management of the business risk.

Economic evaluation on heating systems of apartment complex (공동주택단지 난방시스템들에 대한 경제성 평가)

  • 조금남;윤승호;김원배
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.773-783
    • /
    • 1998
  • The heating system for apartment complex may be classified as old systems including central system with steam boiler(S1), gas engine driven heat pump system(S2), system using waste heat(S3) and new systems including mechanical vapor re-compression system with flashing heat exchangers(S4), system using methanol(S5), system using metal hydride (S6). The purpose of the present study is to suggest optimal heating system by technically, economically and environmentally evaluating old and new heating systems of apartment complex from 500 to 3,000 households. Economic evaluation based on the technical evaluation results which estimated heat transfer area of heat exchangers and capacity of equipments was estimated initial investment cost, annual operating cost and relative payback period by considering annual increasing rates of energy cost and interest. Environmental evaluation provided annual generation rate of carbon dioxide. Initial investment cost was cheap in the order of S6, S5, S3, S2, S4, S1, annual operating cost was cheap in the order of S1, S2, S4, S5 and relative payback period was short in the order of S6, S5, S2, S3 and S4. Relative payback period was within 8 years for all scenarios of 3,000 households, and was increased as annual increasing rates of energy cost and interest were increased. As transportation pipe length was increased twice, payback period was increased by 1.4~2.6 time. The effect of temperatures of waste gas and waste water on the relative payback period was small within 0.8 years. The annual generation rate of carbon dioxide was big in the order of S4, S2 and S1. S4 was the most economic system among whole scenarios when S1 was replaced with other scenarios.

  • PDF

An analysis on the characteristics of regasification system for LNG-FSRU depending on the changes in performance with vaporization and temperature of the heat source (LNG-FSRU용 재기화 시스템의 열원 온도 및 기화성능의 변동에 따른 시스템 특성분석)

  • Lee, Yoon-Ho;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.625-631
    • /
    • 2014
  • In this study, according to increase of thermoelectric power plants that use LNG, LNG-FSRU(Floating-Storage and Regasification Unit) appeared and it is installed on the Topside in order to deliver in a gaseous state to consumers who are in the shore. This study about the study on the characteristics analysis of the system depending on changes in performance with the vaporization and temperature of the heat source. For the characteristics analysis of the system, we devided vaporization method into Ethylene glycol water vaporization method and sea water as a heat source. Then the system that can vaporize 200ton per hour of LNG of $-157.9^{\circ}C$ and 10,400kPa was configured, and according to the temperature of supplied sea water, required minimum flow rate value was calculated. Also in case of using Ethylene glycol Water as a vaporization method, providing for regional and seasonal factors such as decrease of temperature of water. The system is configured by adding a steam boiler of $174.5^{\circ}C$, 775kPa as heat source. The generation amount of the steam required according to the performance of the vaporizer compared to the water temperature changes in the steam boiler and the amount of required evaporative performance due to changes in the quantity of steam and Ethylene glycol Water was confirmed.

Analysis of the Characteristics of Reformer for the Application of Hydrogen Fuel Cell Systems to LNG Fueled Ships (LNG 추진선박에 수소 연료전지 시스템 적용을 위한 개질기의 특성 분석)

  • Lee, Yoon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.135-144
    • /
    • 2021
  • In this study, we investigated the characteristics of the process of hydrogen production using boil-of gas (BOG) generated from an LNG-fueled ship and the application of hydrogen fuel cell systems as auxiliary engines. In this study, the BOG steam reformer process was designed using the UniSim R410 program, and the reformer outlet temperature, pressure, and the fraction and consumption of the product according to the steam/carbon ratio (SCR) were calculated. According to the study, the conversion rate of methane was 100 % when the temperature of the reformer was 890 ℃, and maximum hydrogen production was observed. In addition, the lower the pressure, the higher is the reaction activity. However, higher temperatures have led to a decrease in hydrogen production owing to the preponderance of adverse reactions and increased amounts of water and carbon dioxide. As SCR increased, hydrogen production increased, but the required energy consumption also increased proportionally. Although the hydrogen fraction was the highest when the SCR was 1.8, it was confirmed that the optimal operation range was for SCR to operate at 3 to prevent cocking. In addition, the lower the pressure, the higher is the amount of carbon dioxide generated. Furthermore, 42.5 % of the LNG cold energy based on carbon dioxide generation was required for cooling and liquefaction.

Combustion Study of 1MWe Circulating Fluidized Boiler for RDF (1MWe급 순환유동층 열병합 보일러 운전연구)

  • Shun, Do-Won;Bae, Dal-Hea;Jo, Sung-Ho;Lee, Seung-Yong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.837-842
    • /
    • 2012
  • A pilot scale circulating fluidized boiler (CFB) for refuse derived fuel (RDF) is designed and constructed to demonstrate a performance of CFB technology for waste fuel utilization. The boiler has a design capacity of 6 MWth with $400^{\circ}C$ 38 ata steam generation performance. The maximum steam rate of the boiler was about 8 ton/h. The main component of the fuel was RDF (Refuse Derived Fuel) with high volatile contents and showed fast ignition and easy combustion. The pilot plant showed over 99.5% of combustion efficiency. Stable operation of RDF CFBC depended on the content of non combustion materials other than ash and fast removal of them. Emission level was under legal limit except that of HCl without external flue gas treatment facilities. Also about 60% of fuel chlorine was absorbed to fly ash particles. For HCl emission control flue gas treatment technology is required such as wet and dry scrubber in order to comply with Korean regulation.