• Title/Summary/Keyword: Steam Turbine Cycle

Search Result 96, Processing Time 0.026 seconds

A dual Pressure, Steam Injection Combined cycle Power Plant Performance Analysis (2압, 증기분사 복합발전 사이클에 대한 성능해석)

  • Kim, Su-Yong;Son, Ho-Jae;Park, Mu-Ryong;Yun, Ui-Su
    • 연구논문집
    • /
    • s.27
    • /
    • pp.75-86
    • /
    • 1997
  • Combined cycle power plant is a system where a gas turbine or steam turbine is used to produce shaft power to drive a generator for producing electrical power and the steam from the HRSG is expanded in a steam turbine for additional shaft power. Combined cycle plant is a one from of cogeneration. The temperature of the exhaust gases from a gas turbine ranges from $400^\circC$ to $600^\circC$, and can be used effectively in a heat recovery steam generator to produce steam. Combined cycle can be classed as a "topping(gas turbine)" and a "bottoming(steam turbine)" cycle. The first cycle, to which most of the heat is supplied, is called the topping cycle. The wasted heat it produces is then utilized in a second process which operates at a lower temperature level and is therefore referred to as a "bottoming cycle". The combination of gas/steam turbine power plant managed to be accepted widely because, first, each individual system has already proven themselves in power plants with a single cycle, therefore, the development costs are low. Secondly, the air as a working medium is relatively non-problematic and inexpensive and can be used in gas turbines at an elevated temperature level over $1000^\circC$. The steam process uses water, which is likewise inexpensive and widely available, but better suited for the medium and low temperature ranges. It, therefore, is quite reasonable to use the steam process for the bottoming cycle. Only recently gas turbines attained inlet temperature that make it possible to design a highly efficient combined cycle. In the present study, performance analysis of a dual pressure combined-cycle power plant is carried out to investigate the influence of topping cycle to combined cycle performance.

  • PDF

Performance Analysis of a 3 Pressured Combined Cycle Power Plant (3압 복합 발전 플랜트 사이클에 대한 성능해석)

  • Kim, S. Y.;K. S. Oh;Park, B. C.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.74-82
    • /
    • 1998
  • Combined cycle power plant is a system where a gas turbine or a steam turbine is used to produce shaft power to drive a generator for producing electrical power and the steam from the HRSG is expanded in a steam turbine for additional shaft power. The temperature of the exhaust gases from a gas turbine ranges from $400{\sim}650^{\circ}C$, and can be used effectively in a heat recovery steam generator to produce steam. Combined cycle can be classed as a topping and bottoming cycle. The first cycle, to which most of the heat is supplied, is a Brayton gas turbine cycle. The wasted heat it produces is then utilized in a second process which operates at a lower temperature level is a steam turbine cycle. The combined gas and steam turbine power plant have been widely accepted because, first, each separate system has already proven themselves in power plants as an independent cycle, therefore, the development costs are low. Secondly, using the air as a working medium, the operation is relatively non- problematic and inexpensive and can be used in gas turbines at an elevated temperature level over $1000^{\circ}C$. The steam process uses water, which is likewise inexpensive and widely available, but better suited for the medium and low temperature ranges. It therefore, is quite reasonable to use the steam process for the bottoming cycle. Recently gas turbine attained inlet temperature that make it possible to design a highly efficient combined cycle. In the present study, performance analysis of a 3 pressured combined cycle power plant is carried out to investigate the influence of topping cycle to combined cycle performance. Present calculation is compared with acceptance performance test data from SeoInchon combined cycle power plant. Present results is expected to shed some light to design and manufacture 150~200MW class heavy duty gas turbine whose conceptual design is already being undertaken.

  • PDF

Analysis of Design and Part Load Performance of Micro Gas Turbine/Organic Rankine Cycle Combined Systems

  • Lee, Joon-Hee;Kim, Tong-Seop
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1502-1513
    • /
    • 2006
  • This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several different organic fluids are analyzed and compared with performance of the steam based cycle. All of the organic fluids recover greater MGT exhaust heat than the steam cycle (much lower stack temperature), but their bottoming cycle efficiencies are lower. R123 provides higher combined cycle efficiency than steam does. The efficiencies of the combined cycle with organic fluids are maximized when the turbine exhaust heat of the MGT is fully recovered at the MGT recuperator, whereas the efficiency of the combined cycle with steam shows an almost reverse trend. Since organic fluids have much higher density than steam, they allow more compact systems. The efficiency of the combined cycle, based on a MGT with 30 percent efficiency, can reach almost 40 percent. hlso, the part load operation of the combined system is analyzed. Two representative power control methods are considered and their performances are compared. The variable speed control of the MGT exhibits far better combined cycle part load efficiency than the fuel only control despite slightly lower bottoming cycle performance.

Waste heat recovery of recirculated MCFC using supercritical carbon dioxide power cycle (초임계 이산화탄소 사이클을 이용한 연료 재순환 MCFC의 폐열회수)

  • Lee, Jae Yoon;Ahn, Ji Ho;Kim, Tong Seop
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.42-45
    • /
    • 2019
  • The molten carbonate fuel cell has a high temperature of waste heat and can constitute a bottoming cycle to increase the efficiency. Previous study used a bottoming cycle as steam turbine cycle. In this study, we are going to replace the bottoming cycle with a supercritical carbon dioxide power cycle. The system power was compared to consider replacing the bottoming cycle. As a result, the power of the supercritical carbon dioxide power cycle at the present development stage is lower than that of the steam turbine cycle, but theoretically, the power can be larger than the steam turbine cycle. If the supercritical carbon dioxide power cycle improves the isentropic efficiency of the turbine by 89%, the isentropic efficiency of the compressor by 83%, and the effectiveness of the recuperator by 0.9, the power can be same to the steam turbine cycle.

Root Cause Analysis on the Steam Turbine Blade Damage of the Combined Cycle Power Plant (복합화력발전소 증기터빈 동익 손상 원인분석)

  • Kang, M.S.;Kim, K.Y.;Yun, W.N.;Lee, W.K.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The last stage blade of the low pressure steam turbine remarkably affects turbine plant performance and availability Turbine manufacturers are continuously developing the low pressure last stage blades using the latest technology in order to achieve higher reliability and improved efficiency. They tend to lengthen the last stage blade and apply shrouds at the blades to enhance turbine efficiency. The long blades increase the blade tip circumferential speed and water droplet erosion at shroud is anticipated. Parts of integral shrouds of the last stage 40 inch blades were cracked and liberated recently in a combined cycle power plant. In order to analyze the root cause of the last stage blades shroud cracks, we investigated operational history, heat balance diagram, damaged blades shape, fractured surface of damaged blades, microstructure examination and design data, etc. Root causes were analyzed as the improper material and design of the blade. Notches induced by erosion and blade shroud were failed eventually by high cycle fatigue. This paper describes the root cause analysis and countermeasures for the steam turbine last stage blade shroud cracks of the combined cycle power plant.

  • PDF

Analysis of a Refrigeration Cycle Driven by Refrigerant Steam Turbine (냉매증기터빈에 의해 구동되는 냉동사이클의 해석)

  • 정진희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.801-810
    • /
    • 2002
  • We have analyzed a combined cycle employing refrigerant Rankine cycle and simple refrigeration cycle with one working fluid. Although this cycle shows promising aspects such as simplicity, it does not have a good efficiency to compete with the other existing technologies because of high temperature at the exit of the turbine. However, by introducing a recuperator, it is found that the cycle efficiency can be improved up to the level much higher than other technology's efficiency.

Numerical Analysis of Turbulent Combustion and Emissions in an HRSG System (가스터빈 열 회수 증기 발생기의 난류연소 해석과 배기가스 예측 및 검증)

  • Jang, Jihoon;Han, Karam;Park, Hoyoung;Lee, Wook-Ryun;Huh, Kangyul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The combined cycle plant is an integration of gas turbine and steam turbine, combining the advantages of both cycles. It recovers the heat energy from gas turbine exhaust to use it to generate steam. The heat recovery steam generator plays a crucial role in combined cycle plants, providing the link between the gas turbine and the steam turbine. Simulation of the performance of the HRSG is required to study its effect on the entire cycle and system. Computational fluid dynamics has potential to become a useful to validate the performance of the HRSG. In this study a solver has been implemented in the open source code, OpenFOAM, for combustion simulation in the heat recovery steam generator. The solver is based on the steady laminar flamelet model to simulate detailed chemical reaction mechanism. Thereafter, the solver is used for simulation of HRSG system. Three cases with varying fuel injections and gas turbine exhaust gas flow rates were simulated and the results were compared with measurements at the system outlet. Predicted temperature and emissions and those from measurements showed the same trend and in quantitative agreement.

Performance Design Analysis of the Bottoming System of Combined Cycle Power Plants (복합화력발전 하부시스템의 성능설계해석)

  • Lee, B.R.;Kim, T.S.;Ro, S.T.;Shin, H.T.;Jeon, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.738-743
    • /
    • 2001
  • A computer program, capable of performing thermal design analysis of the triple pressure bottoming system of combined cycle power plants, was developed. The program is based on thermal analysis of the heat recovery steam generator and estimation of its size and steam turbine power. The program is applicable to various parametric analyses including optimized design calculation. This paper presents examples of analysis results for the effects of arrangement of heat exchanger units, steam pressures and deaerating sources on design performance indices such as steam turbine power and the size of heat recovery steam generator.

  • PDF

A Thermodynamic Study on Suction Cooling-Steam Injected Gas Turbine Cycle (吸氣冷却-蒸氣噴射 가스터빈 사이클에 관한 열역학적 연구)

  • 박종구;양옥룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.77-86
    • /
    • 1992
  • This paper discusses the thermodynamic study on the suction cooling-steam injected gas turbine cycle. The aim of this study is to improve the thermal efficiency and the specific output by steam injection produced by the waste heat from the waste heat recovery boiler and by cooling compressor inlet air by an ammonia absorption-type suction cooling system. The operating region of this newly devised cycle depends upon the pinch point limit and the outlet temperature of refrigerator. The higher steam injection ratio and the lower the evaporating temperature of refrigerant allow the higher thermal efficiency and the specific output. The optimum pressure ratios and the steam injection ratios for the maximum thermal efficiency and the specific output can be found. It is evident that this cycle considered as one of the most effective methods which can obtain the higher thermal efficiency and the specific output comparing with the conventional simple cycle and steam injected gas turbine cycle.

Analysis of Dynamic Behavior of a Heat Recovery Steam Generator and Steam Turbine System (열회수 증기발생기와 증기터빈 시스템의 동적 거동 해석)

  • Park, Hyung-Joon;Kim, Tong-Seop;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.994-1001
    • /
    • 2000
  • The dynamic behavior of a single-pressure heat recovery steam generator and turbine system for the combined cycle power plant is simulated on the basis of one-dimensional unsteady governing equations. A water level control and a turbine power control are also included in the calculation routine. Transient response of the system to the variation of gas turbine exit condition is simulated and effect of the turbine power control on the system response is examined. In addition, the effect of the treatment of inertia terms(fluid inertia and thermal inertia of heat exchanger metal) on the simulated transient response is investigated.