• Title/Summary/Keyword: Stealth Technology

Search Result 84, Processing Time 0.031 seconds

Fabrication and Microstructure of Metal-Coated Carbon Nanofibers using Electroless Plating (무전해 도금을 이용한 금속 코팅된 탄소나노섬유의 제조 및 미세조직)

  • Park, Ki-Yeon;Yi, Sang-Bok;Kim, Jin-Bong;Lee, Jin-Woo;Lee, Sang-Kwan;Han, Jae-Hung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.43-48
    • /
    • 2007
  • The absorption and the interference shielding of electromagnetic wave have been very important issues for commercial and military purposes. The stealth technique is one of the most typical applications of electromagnetic wave absorption technology. This study has started for the development of composite fillers containing dielectric and magnetic lossy materials. To improve the electromagnetic characteristics of conductive nano fillers, carbon nanofibers (CNFs) with nickel-phosphorous (Ni-P) or nickel-iron (Ni-Fe) have been fabricated by the electroless plating process. Observations by the electron microscopy (SEM/TEM) and element analyzer (EDS/ELLS) showed the uniform Ni-P and Ni-Fe coated CNFs. The compositions of the plating layers were about Ni-6wt%P and Ni-70wt%Fe, respectively. The average thicknesses of the plating layers were about $50\;{\sim}\;100\;nm$.

A Study on Effect of the Solar Elevation on the Ship IR Signature (태양고각 변화에 따른 함정 적외선신호에 관한 연구)

  • Kim, Yoon-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.38-45
    • /
    • 2010
  • A study on the infrared signature of a naval ship by the solar elevation was performed using the well known IR signature analysis software, ShipIR/NTCS. The contrast radiant intensity of a ship against the Eastern Sea background from sunrise to noon was investigated. Monthly averaged climate data for both January and July were applied to investigate the seasonal change in the signature. A study on the signature for different ship speeds was also carried out. Simulation results showed that the maximum signature in both wave-bands for a sea-level observer occurred at around 25~35 degrees of solar elevation and was highly dependent on the ship geometry rather than the solar irradiance.

Interaction of Beam and Coated Metals at High Power Continuous Irradiation (코팅된 시편과 레이저 빔과의 상호 작용 연구)

  • Kim, Yong-Hyeon;Baek, Won-Kye;Sin, Wan-Soon;Yoh, Jai-Ick
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.974-978
    • /
    • 2011
  • The beam-matter interaction with various coating effects has received continued attention in the high power laser community. Previous works suggest that coatings promote target damage when compared to beaming on uncoated surface. Three types of paint coatings(Acrylic urethane, Silicone alkyd and Stealth blend) and a water coat on metals(Al, Ti and STS) are irradiated with a $CO_2$ laser. Both strain and temperature measurements are provided for assessing the instantaneous response characteristics of each coating on different metals. A selective combination of surface coats with metals has proven effective in either preventing or enhancing damage, both thermal and mechanical, associated with focused beaming on a target.

A Study on Defense Robot Combat Concepts Using Fourth Industrial Revolution Technologies

  • Sang-Hyuk Park;Jae-Geon Lee;Moo-Chun Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.249-253
    • /
    • 2024
  • The ultimate purpose of this study is as follows: The current primary concern in the defense sector revolves around how to strategically utilize Fourth Industrial Revolution technologies in combat. The Fourth Industrial Revolution denotes a shift towards an environment where automation and connectivity are maximized, driven by technologies such as artificial intelligence. Coined by Klaus Schwab in the 2015 Davos Forum, this term highlights the significant role of machine learning and artificial intelligence. Particularly, the military application of Fourth Industrial Revolution technologies is expected to be actively researched and implemented. Combat involves military actions between units, typically conducted as part of a larger war, with units striving to achieve one or more objectives. The concept of combat refers to the fundamental ideas of how units should engage with the enemy, both presently and in future scenarios, to achieve assigned objectives.

Low-Noise Preamplifier Design for Underwater Electric Field Sensors using Chopper stabilized Operational Amplifiers and Multiple Matched Transistors (초퍼 연산증폭기와 다수의 정합 트랜지스터를 이용한 수중 전기장 센서용 저잡음 전치 증폭기 설계)

  • Bae, Ki-Woong;Yang, Chang-Seob;Han, Seung-Hwan;Jeoung, Sang-Myung;Chung, Hyun-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.120-124
    • /
    • 2022
  • With advancements in underwater stealth technology for naval vessels, new sensor configurations for detecting targets have been attracting increased attention. Latest underwater mines adopt multiple sensor configurations that include electric field sensors to detect targets and to help acquire accurate ignition time. An underwater electric field sensor consists of a pair of electrodes, signal processing unit, and preamplifier. For detecting underwater electric fields, the preamplifier requires low-noise amplification at ultra-low frequency bands. In this paper, the specific requirements for low-noise preamplifiers are discussed along with the experimental results of various setups of matched transistors and chopper stabilized operational amplifiers. The results showed that noise characteristics at ultra-low frequency bands were affected significantly by the voltage noise density of the chopper amplifier and the number of matched transistors used for differential amplification. The fabricated preamplifier was operated within normal design parameters, which was verified by testing its gain, phase, and linearity.

Analysis of Target Identification Performances against the Moving Targets Using a Bistatic Radar (바이스태틱 레이다를 이용한 이동표적에 대한 표적식별 성능 분석)

  • Lee, Seung-Jae;Bae, Ji-Hoon;Jeong, Seong-Jae;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.198-207
    • /
    • 2016
  • Bistatric radar can perform detection and identification for stealth targets that are rarely detected by the conventional monostatic radar. However, high resolution range profile(HRRP) generated from the received signal in the bistatic radar cannot show exact range information of the target because the bistatic geometry lead to the distortions of the bistatic HRRP. In addition, electromagnetic scattering mechanisms of the target are varied depending on the bistatic geometry. Thus, efficient database construction is a crucial factor to achieve successful classification capability in bistatic target identification. In this paper, a database construction method based on realistic flight scenarios of a target, which provides a reliable identification performance for the monostatic radar, is applied to bistatic target identification. Then, the capability and efficiency of the method is analyzed. Simulation results show that reliable identification performance can be achieved using the database construction based on the flight scenarios when the target is a considerable distance away from the bistatic radar.

A Study on the RCS Analysis and Reduction Method of Unmanned Surface Vehicles (무인수상정의 RCS 해석 및 감소 방법에 대한 연구)

  • Han, Min-Seok;Ryu, Jae-Kwan;Hong, Soon-Kook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.425-433
    • /
    • 2019
  • In this paper, the RCS analysis of the 10m unmanned surface vehicles was performed, and the factors of RCS increase were analyzed. Modeling techniques by transforming a geometric shape can reduce the RCS area, which can be used to develop stealth unmanned surface vehicles. In order to reduce the RCS, the existing Top Mast part was moved 1m to the tail part, the 5 degree tilt angle was moved below 0.5 m, and additional guided walls were installed to minimize the influence on the center and surrounding corner reflecting structures. As a result of comparing and analyzing the RCS analysis value with the existing model, it can be seen that the reduced countermeasure model is -3.79 dB lower than the existing model for all elevations. In particular, it can be seen that the strong scattering phenomenon is substantially removed in the region except the sacrificial angle region. In addition, it can be seen that in the case of -5m to 2m where the guide wall is added, the reflected signal is improved up to 20 to 40 dB or more, so that it does not appear on the 2D ISAR image. RCS analysis of unmanned surface vehicles explained the process of analyzing and identifying problem location through distance profile analysis and ISAR image analysis.

Feasibility study of corner reflector for radar countermeasures and deception for conventional forces

  • Kang, Hee-Jin;Yang, Hyang-Kweon;Jo, Min-Chul;Kim, Kook-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.2
    • /
    • pp.171-175
    • /
    • 2017
  • The high-tech large warships are minimal and they are always monitored by opponents, and become primary targets when conflicts occur. The improvement in reducing susceptibility has significant importance because it is difficult for a ship to maintain mission capability and functionality once it is damaged. Ordinary decoys are effective only under the premise that the ship has already been exposed. Traditionally, for naval vessels, techniques related to the radar have been used in military stealth techniques to ensure confidentiality. The corner reflector, on the other hand, can produce rather large radar cross sections. Continued use of deceptive systems such as chaff during operations will help to improve survivability of naval ships. From this viewpoint, corner reflector was considered for making radar countermeasures and deception technology. This paper reviews the current status of corner reflector basis decoys and the technical feasibility of corner reflectors for developing structural decoys.

Method of Analyzing the ISAR image of Electrically Large Objects Partially Coated with RAM Using PO Technique (PO 기법을 이용한 부분 코팅된 전기적 대형물체의 ISAR 해석 방법)

  • Noh, Yeong-Hoon;Kim, Woobin;Yook, Jong-Gwan;Hong, Ic-Pyo;Kim, Yoon-Jae;Oh, Wonseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.328-336
    • /
    • 2020
  • This paper presents an asymptotic analysis method using the PO(physical optics) approximation technique to analyze the scattering contribution of an electrically large object partially coated with a radar absorbing material(RAM). By using the feature of the PO technique that can calculate the equivalent current value for each mesh independently, instead of analyzing the entire structure, scattering analysis was performed only by calculating the current on the area where the RAM coating is applied. By the numerical examples, the accuracy and the computation time of the proposed method were verified, and the computational efficiency of inverse synthetic aperture radar(ISAR) of the electrically large objects that require enormous resources is improved.

Applications of metamaterials: Cloaking, Photonics, and Energy Harvesting

  • Kim, Kyoungsik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.77.2-77.2
    • /
    • 2015
  • Recently, metamaterials attracted much attention because of the potential applications for superlens, cloaking and high precision sensors. We developed several dielectric metamaterials for enhancing antireflection or light trapping capability in solar energy harvesting devices. Colloidal lithography and electrochemical anodization process were employed to fabricate self-assembed nano- and microscale dielectric metamaterials in a simple and cost-effective manner. We improved broadband light absorption in c-Si, a-Si, and organic semiconductor layer by employing polystyrene (PS) islands integrated Si conical-frustum arrays, resonant PS nanosphere arrays, and diffusive alumina nanowire arrays, respectively. We also demonstrated thin metal coated alumina nanowire array which is utilized as an efficient light-to-heat conversion layer of solar steam generating devices. The scalable design and adaptable fabrication route to our light management nanostructures will be promising in applications of solar energy harvesting system. On the other hands, broadband invisible cloaks, which continuously work while elastically deforming, are developed using smart metamaterials made of photonic and elastic crystals. A self-adjustable, nearly lossless, and broadband (10-12GHz) smart meatamaterials have great potentials for applications in antenna system and military stealth technology.

  • PDF