• Title/Summary/Keyword: Steady-state thermal-hydraulic calculations

Search Result 4, Processing Time 0.016 seconds

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

Coupled neutronics/thermal-hydraulic analysis of ANTS-100e using MCS/RAST-F two-step code system

  • Tung Dong Cao Nguyen;Tuan Quoc Tran;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4048-4056
    • /
    • 2023
  • The feasibility of using the Monte Carlo code MCS to generate multigroup cross sections for nodal diffusion simulations RAST-F of liquid metal fast reactors is investigated in this paper. The performance of the MCS/RAST-F code system is assessed using steady-state simulations of the ANTS-100e core. The results show good agreement between MCS/RAST-F and MCS reference solutions, with a keff difference of less than 77 pcm and root-mean-square differences in radial and axial power of less than 0.5% and 0.25%, respectively. Furthermore, the MCS/RAST-F reactivity feedback coefficients are within three standard deviations of the MCS coefficients. To validate the internal thermal-hydraulic (TH) feedback capability in RAST-F code, the coupled neutronic/TH1D simulation of ANTS-100e is performed using the case matrix obtained from MCS branch calculations. The results are compared to those obtained using the MARS-LBE system code and show good agreement with relative temperature differences in fuel and coolant of less than 0.8%. This study demonstrates that the MCS/RAST-F code system can produce accurate results for core steady-state neutronic calculations and for coupled neutronic/TH simulations.

Thermal hydraulic analysis of core flow bypass in a typical research reactor

  • Ibrahim, Said M.A.;El-Morshedy, Salah El-Din;Abdelmaksoud, Abdelfatah
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.54-59
    • /
    • 2019
  • The main objective of nuclear reactor safety is to maintain the nuclear fuel in a thermally safe condition with enough safety margins during normal operation and anticipated operational occurrences. In this research, core flow bypass is studied under the conditions of the unavailability of safety systems. As core bypass occurs, the core flow rate is assumed to decrease exponentially with a time constant of 25 s to new steady state values of 20, 40, 60, and 80% of the nominal core flow rate. The thermal hydraulic code PARET is used through these calculations. Reactor thermal hydraulic stability is reported for all cases of core flow bypass.

Thermal Margin Analysis of the Korea Nuclear Unit 1 Reactor Core Consisting of Standard or Optimized Fuel Assemblies (표준 핵연료집합체 또는 최적 핵연료집합체가 장전된 원자력 1호기 원자로심의 열적여유도 분석)

  • Hyun Koon Kim;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.155-160
    • /
    • 1984
  • Analyzed is the thermal margin of the Korea Nuclear Unit 1 (KNU-1) reactor core consisting of either 14 x 14 standard fuel assemblies (SFA) or optimized fuel assemblies (OFA). Employed for the analysis are two different thermal design methods; traditional and statistical thermal design method. Compared to the traditional design thermal method, the statistical thermal design method improves the core thermal margin utilizing best-estimate values for the core operating parameters combining their uncertainties in a statistical manner. Calculations are performed using a steady state and transient thermal-hydraulic analysis computer program, COBRA-IV-i. Calculated results show that the statistical thermal design method significantly improves the thermal margin and satisfies the core thermal design base of the KNU-1 SFA and OFA core. However, the thermal design base can not be met, if the traditional thermal design method is employed for the OFA role analysis.

  • PDF