• Title/Summary/Keyword: Steady-state pressure

Search Result 559, Processing Time 0.027 seconds

Heat Transfer Characteristics of an Annulus Channel Cooled with R-134a Fluid near the Critical Pressure (임계압력 근처에서의 환형관 채널에 대한 열전달 특성 연구)

  • Hong, Sung-Deok;Chun, Se-Young;Kim, Se-Yun;Baek, Won-Pil
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2094-2099
    • /
    • 2004
  • An experimental study on heat transfer characteristics near the critical pressure has been performed with an internally-heated vertical annular channel cooled by R-134a fluid. Two series of tests have been completed: (a) steady-state critical heat flux (CHF) and (b) heat transfer tests for pressure reduction transients through the critical pressure. In the present experimental range, the steady-state CHF decreases with the increase of the system pressure For a fixed inlet mass flux and subcooling, the CHF falls sharply at about 3.8 MPa and shows a trend toward converging to zero as the pressure approaches the critical point of 4.059 MPa. The CHF phenomenon near the critical pressure does not lead to an abrupt temperature rise of the heated wall because the CHF occurred at remarkably low power levels. In the pressure reduction transient experiments, as soon as the pressure passed through the critical pressure, the wall temperatures rise rapidly up to a very high value due to the occurrence of the departure from nucleate boiling. The wall temperature reaches a maximum at the saturation point of the outlet temperature, then tends to decrease gradually.

  • PDF

A Two-Dimensional Analysis of Heat Transfer and Flow in Proton Exchange Membrane Fuel Cells (고분자 전해질 연료전지의 2차원 열전달 및 유동 해석)

  • Jeong, Hye-Mi;Yang, Ji-Hye;Koo, Ja-Ye;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.995-1000
    • /
    • 2001
  • Distributions of the parameters in proton exchange membrane fuel cell (PEMFC) has been analyzed numerically under steady-state and isothermal conditions. The distributions of the crucial parameters (e.g., temperature and pressure) in a PEMFC have a major impact on its safe and efficient operation. This paper predicts the performance of the model electrode plates by calculating the pressure and temperature distributions of working fluid. The calculated results of pressure and temperature at exit condition shows good agreement to experiments and gives details of flow pattern inside of electrode plates.

  • PDF

Development of Direct Extrusion Process on Al 1050 Condenser Tube by using Porthole Die (포트홀 다이를 이용한 Al1050 컨덴서 튜브의 직접압출공정 기술 개발)

  • 이정민;김병민;강충길;조형호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.53-61
    • /
    • 2004
  • Condenser tube which is used for a cooling system of automobiles is mainly manufactured by conform extrusion. However, direct extrusion using porthole die in comparison with conform extrusion has many advantages such as improvement of productivity, reduction of production cost etc. In general, the porthole die extrusion process is useful for manufacturing long tubes with hollow sections and consists of three stages(dividing, welding and forming stages). Especially, Porthole die for producing condenser tube is very complex. Thus, in order to obtain the detailed mechanics, to assist in the design of proper die shapes and sizes, and to improve the quality of products, porthole die extrusion should be analyzed in as non-steady state as possible. This paper describes FE analysis of non-steady state porthole die extrusion for producing condenser tube with multi-hole through 3D simulation in the non-steady state during the entire process to evaluate detailed metal flow, temperature distribution, welding pressure and extrusion load. Also to validate FE simulation of porthole die extrusion, a comparison of simulation and experiment results was presented in this paper.

Safety Evaluation of Agricultural Reservoirs due to Raising Embankment by Field Monitoring and Numerical Analysis (현장계측과 수치해석에 의한 농업용저수지 제체의 안정성 평가)

  • Lee, Kwang Sol;Lee, Dal Won;Lee, Young Hak
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.31-44
    • /
    • 2016
  • This study analyzed pore water pressure, earth pressure and settlement through field monitoring on the project site in which raising embankments are being built through backside extension, and compared the behaviors of seepage analysis, slope stability analysis and stress-strain during flood water levels and rapid drawdown under steady state and transient condition. The variation of pore water pressure showed an increase during the later period in both upstream and downstream slope, with downstream slope more largely increased than upstream slope overall. The variation of earth pressure increased according to the increase of embankment heights, while the change largely showed in the upstream slope, it was slowly increased in the downstream slope. The settlements largely increased until 23 m as embankment heights increased, and showed very little settlement overall. Under a steady state and transient conditions, the seepage quantity per day and leakage quantity per 100 m of embankment against total storage were shown to be stable for piping. The hydraulic gradient at the core before and after raising embankments was greater than the limit hydraulic gradient, showing instability for piping. The safety factor of upstream and downstream slopes were shown to be very large at a steady state, while the upstream slopes greatly decreased at a transit conditions, downstream slopes did not show any significant changes. The horizontal settlements, the maximum shear strain and stress are especially distributed at the connecting portion of the existing reservoir and the new extension of backside. Accordingly, the backside extension method should be designed and reinforced differently from the cases of other types reservoirs.

Steady and Unsteady State Characteristics of Length Effects about Linear Pintle Nozzle (직선형 핀틀 노즐의 길이비에 따른 정상상태와 비정상상태 특성 연구)

  • Jeong, Kiyeon;Kang, Dong-Gi;Jung, Eunhee;Lee, Daeyeon;Kim, Dukhyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.28-39
    • /
    • 2018
  • In this study, numerical simulations were performed for steady and unsteady state characteristics of length effects on linear pintle nozzles using the overset grid method. Nozzles and pintles are created separately by an auto grid generation program to use the overset grid method. Appropriate turbulent models and numerical methods are selected for the validation of simulations. Pintle shapes are chosen from five types, with differences in the ratio of length and diameter. The longer the pintle length, the greater the thrust and thrust coefficient. The chamber pressure tendency of steady-state and unsteady-state are different for various pintle velocities. The thrust of the nozzle exit responds to changes in the nozzle throat in the unsteady-state, and the speed of pressure propagation wave generated by movement of the pintle is considered to predict the major factor of performance.

Experimental Study on the Heat Transfer Characteristics under the Supercritical Pressures (초임계압 열전달 특성에 관한 실험 연구)

  • Kang, Kyoung-Ho;Youn, Young-Jung;Park, Jong-Kuk;Choo, Yeon-Jun;Chun, Se-Young;Song, Chul-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2242-2247
    • /
    • 2008
  • A series of experiments have been performed in a vertical tube of 9.4 mm inner diameter using the Freon, HFC-134a as working fluid medium under the supercritical pressure range. Two kinds of experiments, i.e. steady-state and pressure transient, have been carried out. As for the steady-state heat transfer experiment, the mass flux was in the range between 600 and $2000\;kg/m^2s$ and the maximum heat flux was $160\;kW/m^2$. The selected pressures were 4.1, 4.3 and 4.5 MPa which correspond to 1.01, 1.06 and 1.11 times the critical pressure, respectively. In the pressure transient experiments, the inlet pressures were varied from 3.8 to 4.5 MPa and vice versa in the pressure transient simulations. In this study, heat transfer correlation and criterion for the heat transfer deterioration are suggested under the supercritical pressures. And also heat transfer characteristics during the pressure transient are examined.

  • PDF

Design of a Pressure Feedback Controller for Hydraulic Excavator Pilot System with EPPRVs (EPPRV 적용 굴착기 파일롯 시스템 압력 피드백 제어기 설계)

  • Seungjin Yoo;Cheol-Gyu Park;Seung-Han You
    • Journal of Drive and Control
    • /
    • v.21 no.3
    • /
    • pp.9-19
    • /
    • 2024
  • Many modern hydraulic excavators now use EPPRVs (Electronic Proportional Pressure Reducing Valves) in their pilot systems to control the spool displacement of the main hydraulic system. However, the performance of these systems is often limited by factors such as magnetic hysteresis, mechanical wear, and transient responses influenced by operating conditions and component installation. This paper presents a pressure feedback controller for excavator pilot systems that utilize EPPRVs. This controller significantly reduces steady-state pressure control errors and mitigates the hysteresis effects commonly seen in traditional open-loop systems. To achieve this, we integrated EPPRVs with the main hydraulic valve and injected a chirp signal into the solenoid current. By doing so, we were able to measure the frequency response of the pilot system across different operating pressures and estimate the system dynamics model. Using these models, we designed a set of PI pressure feedback controllers that are guaranteed to be stable. These controllers were then integrated with a gain scheduler based on a lookup table. Experimental results demonstrate that when the developed pressure feedback controller is incorporated into the conventional open-loop controller, it effectively reduces steady-state pressure control errors and mitigates hysteresis.

Acoustic Response of Hydrogen/Liquid Oxygen Flame in Stagnation-Point Flow (정체점 유동장에서 수소-액체산소 화염의 음향파 응답 특성)

  • Park, Sung-Woo;Chung, Suk-Ho;Kim, Hong-Jip
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.440-446
    • /
    • 2003
  • Steady-state structure and acoustic pressure responses of GH$_2$-LOx diffusion flames in stagnation-point flow configuration have been studied numerically with a detailed chemistry to investigate the acoustic instabilities. The Rayleigh criterion is adopted to judge the instability of the GH$_2$-LOx flames from amplification and attenuation responses at various acoustic pressure oscillation conditions for near-equilibrium to near-extinction regimes. Steady state flame structure showed that the chain branching zone is embedded in surrounding two recombination zones. The acoustic responses of GH$_2$-LOx flame showed that the responses in near-extinction regime always have amplification effect regardless of realistic acoustic frequency. That is, GH$_2$-LOx flame near-extinction is much sensitive to pressure perturbation because of the strong effect of a finite-chemistry.

Prediction of solute rejection and modelling of steady-state concentration polarisation effects in pressure-driven membrane filtration using computational fluid dynamics

  • Keir, Greg;Jegatheesan, Veeriah
    • Membrane and Water Treatment
    • /
    • v.3 no.2
    • /
    • pp.77-98
    • /
    • 2012
  • A two-dimensional (2D) steady state numerical model of concentration polarisation (CP) phenomena in a membrane channel has been developed using the commercially available computational fluid dynamics (CFD) package CFX (Ansys, Inc., USA). The model incorporates the transmembrane pressure (TMP), axially variable permeate flux, variable diffusivity and viscosity, and osmotic pressure effects. The model has been verified against several benchmark analytical and empirical solutions from the membrane literature. Additionally, the model is able to predict the rejection of an arbitrary solute by the membrane using a pore model, given some basic knowledge of the geometry of the solute molecule or particle, and the membrane pore geometry. This allows for predictive design of membrane systems without experimental determination of the membrane rejection for the specified operating conditions. A demonstration of the model is presented against experimental results for two uncharged test compounds (sucrose and PEG1000) from the literature. The model will be extended to incorporate charge effects, transient simulations, three-dimensional (3D) geometry and turbulent effects in future work.

Influence of Negative-Pressure Wound Therapy on Tissue Oxygenation of the Foot

  • Shon, Yoo-Seok;Lee, Ye-Na;Jeong, Seong-Ho;Dhong, Eun-Sang;Han, Seung-Kyu
    • Archives of Plastic Surgery
    • /
    • v.41 no.6
    • /
    • pp.668-672
    • /
    • 2014
  • Background Negative-pressure wound therapy (NPWT) is believed to accelerate wound healing by altering wound microvascular blood flow. Although many studies using laser Doppler have found that NPWT increases perfusion, recent work using other modalities has demonstrated that perfusion is reduced. The purpose of this study was to investigate the influence of NPWT on tissue oxygenation of the foot, which is the most sensitive region of the body to ischemia. Methods Transcutaneous partial pressure of oxygen ($TcpO_2$) was used to determine perfusion beneath NPWT dressings of 10 healthy feet. The sensor was placed on the tarso-metatarsal area of the foot and the NPWT dressing was placed above the sensor. $TcpO_2$ was measured until it reached a steady plateau state. The readings obtained at the suction-on period were compared with the initial baseline (pre-suction) readings. Results $TcpO_2$ decreased significantly immediately after applying NPWT, but gradually increased over time until reaching a steady plateau state. The decrease in $TcpO_2$ from baseline to the steady state was 2.9 to 13.9 mm Hg (mean, $9.3{\pm}3.6$ mm Hg; $13.5{\pm}5.8%$; P<0.01). All feet reached a plateau within 20 to 65 minutes after suction was applied. Conclusions NPWT significantly decrease tissue oxygenation of the foot by 2.9 to 13.9 mm Hg. NPWT should be used with caution on feet that do not have adequate tissue oxygenation for wound healing.