• Title/Summary/Keyword: Steady-state operation

Search Result 620, Processing Time 0.025 seconds

Effects of Material Parameters and Process Conditions on the Roll-Drafting Dynamics

  • Huh, You;Kim, Jong-S.
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.424-431
    • /
    • 2006
  • Roll drafting, a mechanical operation attenuating fiber bundles to an appropriate thickness, is an important operation unit for manufacturing staple yams. It influences not only the linear density regularity of the slivers or staple yams that are produced, but also the quality of the textile product and the efficiency of the thereafter processes. In this research, the dynamic states of the fiber bundle in the roll drafting zone were analyzed by simulation, based on the mathematical model that describes the dynamic behavior of the flowing bundle. The state variables are the linear density and velocity of the fiber bundles and we simulated the dynamics states of the bundle flow, e.g., the profiles of the linear density and velocity in the draft zone for various values of the model parameters and boundary conditions, including the initial conditions to obtain their influence on the dynamic state. Results showed that the mean velocity profile of the fiber bundle was strongly influenced by draft ratio and process speed, while the input sliver linear density has hardly affected the process dynamics. Velocity variance of individual fibers that could be supposed to be a disturbing factor in drafting was also influenced by the process speed. But the major disturbance occurred due to the velocity slope discontinuity at the front roll, which was strongly influenced by the process speed. Thickness of input sliver didn't play any important role in the process dynamics.

a linear system approach

  • 이태억
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.10a
    • /
    • pp.118-118
    • /
    • 1993
  • We consider a discrete event dynamic system called periodic job shop, where an identical mixture of items called minimal part set(MPS) is repetitively produced in the same processing order and the primary performance measure is the cycle time. The precedence relationships among events(starts of operations) are represented by a directed graph with rocurront otructure. When each operation starts as soon as all its preceding operations complete(called earliest starting), the occurrences of events are modeled in a linear system using a special algebra called minimax algebra. By investigating the eigenvalues and the eigenvectors, we develop conditions on the directed graph for which a stable steady state or a finite eigenvector exists. We demonstrate that each finite eigenvector, characterized as a finite linear combination of a class of eigenvalue, is the minimum among all the feasible schedules and an identical schedule pattern repeats every MPS. We develop an efficient algorithm to find a schedule among such schedules that minimizes a secondary performance measure related to work-in-process inventory. As a by-product of the linear system approach, we also propose a way of characterizing stable steady states of a class of discrete event dynamic systems.

  • PDF

Wireless parallel operation of high voltage DC power supply using steady-state estimation (정상상태 판별을 이용한 고전압 직류전원장천의 Wireless 병렬 운전)

  • Son, H.S.;Baek, J.W.;Yoo, D.W.;Kim, J.M.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.208-211
    • /
    • 2003
  • This paper presents an improved droop method of the high voltage DC power supply which minimizes the voltage droop of a parallel-connected power supply. Conventionally, the droop method has been used to achieve a simple structure and no-interconnections among the power sources. However, it has a trade-off between output voltage regulation and load sharing accuracy. In this paper, the droop is minimized with a current and droop gain control using steady-stage estimation. The proposed method can achieve both high performance voltage regulation and load sharing. Two 10kV, 100mA parallel power modules were made and tested to verify the proposed current-sharing method.

  • PDF

Steady states and dynamic behavior of an LDPE autoclave reactor

  • Lee, Jin-Suk;Chang, Kil-Sang;Kim, Jae-Yeon;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.813-818
    • /
    • 1989
  • A two compartmented autoclave reactor for the polymerization of low density polyethylene is analyzed with respect to the effects of heat transfer and operation variables. Each compartment being considered as a completely mixed cell, two CSTRs model is proposed. The system shows various multiplicity features of steady state and periodic oscillatory motions. Heat removal efficiency and initiator supplement appear to have significant effect on the conversion of monomer with the temperature properly maintained, which should be taken into account in the reactor design.

  • PDF

A Study on the Multi-resonant characteristics of Half-wave Resonant Type Multi-output ZVS HB Converter for the Plasma Display Panel (PDP용 반파 공진형 멀티출력 하프브리지 컨버터의 다중 공진특성에 관한 연구)

  • Lee, Jae-In;Son, Ho-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.6
    • /
    • pp.314-324
    • /
    • 2006
  • In recent years, having the advantages of being small, low in cost and high in efficiency, Half-wave resonant type, (having only one output diode), is used in ZVS Half-Bridge DC/DC converter. This paper presents the operation mode by multi-resonant factors in the Half-wave type multi-resonant converter with direct Buck chopper circuit operated in discontinuous current mode. To study the characteristics of a multi-resonant operation in steady-state, the characteristic impedances in each mode and safe operation-region(S.O.R) are reported. Computer simulation and experimental data are also riven to verify the theoretical results.

Analysis of Design and Operation Performance of Micro Gas Turbine : Part 1 - Performance Analysis Program (마이크로 가스터빈 설계 및 운전 성능 분석 : 제1부 - 성능해석 프로그램)

  • Kim, Jeong Ho;Kang, Do Won;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.22-29
    • /
    • 2015
  • In this study, an in-house program to predict steady state operation of micro gas turbines is constructed using MATLAB. The program consists of two parts: design and off-design simulations. The program is fully modular in its structure, and performance of each component (compressor, combustor, turbine, recuperative heat exchanger and pipe elements) is calculated in a separate calculation module using mass and energy balances as well as models for off-design characteristics. The off-design modules of compressor and turbine use performance maps, which are program inputs. The off-design operation of a micro gas turbine under development was predicted by the program. The prediction results were compared with those by commercial software, and the validity of the in-house program was confirmed.

Design and simulation of an RCN Controller to improve steady state behavior of a self-excited induction generator

  • Garg, Anjali;Sandhu, Kanwarjit Singh;Saini, Lalit Mohan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.464-471
    • /
    • 2012
  • Self-excited induction generators (SEIG) are gaining importance as compared to conventional generators due to their capability toconvert wind energy into electrical energy for a wide range of variation in operating speed. The performance of such a generator depends upon the load, rotor speed and excitation capacitance. Therefore, depending upon the operating conditions, the output voltage and frequency of this machine goes on changing and this imposes a restriction on its usage. In order to maintain constant voltage and frequency, it need controllers, which make the circuit complicated and also increases the overall cost of power generation. This paper presents a simple controller to regulate the output voltage and frequency of SEIG for variation in its operating conditions due to any change in load, rotor speed and excitation capacitance (R, N, C) and their combination. The controller presented is simple in design, user friendly and is also less expensive, as the elements used in the controller are only resistors, inductors and capacitors. A block of SEIG for steady state operation is also modeled and presented in this paper. SEIG, Controller and other components are modeled and simulated using Matlab/Simulink.

Solid Circulation Characteristics of Oxygen Carrier for Chemical Looping Combustion System at Ambient Temperature and Pressure (케미컬루핑 연소시스템을 위한 산소전달입자의 상온-상압 고체순환특성)

  • YOON, JOOYOUNG;KIM, HANA;KIM, JUNGHWAN;LEE, DOYEON;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.384-391
    • /
    • 2017
  • Effects of operating variables on solid circulation rate were measured and discussed using two-interconnected circulating fluidized bed system at ambient temperature and pressure. OCN 706-1100 particles were used as oxygen carrier. The measured solid circulation rates increased as the lower loop seal gas flow rates and the solid height in the fuel reactor increased. Suitable operating conditions to avoid choking of the air reactor were confirmed. Continuous long-term operations of steady-state solid circulation were also demonstrated at two different conditions based on the operating window.

Position Control for Interior Permanent Magnet Synchronous Motors using an Adaptive Integral Binary Observer

  • Kang, Hyoung-Seok;Kim, Cheon-Kyu;Kim, Young-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.240-248
    • /
    • 2009
  • An approach to control the position for an interior permanent magnet synchronous motor (IPMSM) based on an adaptive integral binary observer is described. The binary controller with a binary observer is composed of a main loop regulator and an auxiliary loop regulator. One of its key features is that it alleviates chatter in the constant boundary layer. However, steady state estimation accuracy and robustness are dependent upon the thickness of the constant boundary layer. In order to improve the steady state performance of the binary observer and eliminate the chattering problem of the constant boundary layer, a new binary observer is formed by adding extra integral dynamics to the existing switching hyperplane equation. Also, the proposed adaptive integral binary observer applies an adaptive scheme because the parameters of the dynamic equations such as the machine inertia and the viscosity friction coefficient are not well known. Furthermore, these values can typically be easily changed during normal operation. However, the proposed observer can overcome the problems caused by using the dynamic equations, and the rotor position estimation is constructed by integrating the rotor speed estimated with a Lyapunov function. Experimental results obtained using the proposed algorithm are presented to demonstrate the effectiveness of the approach.

Coordination of UPFC and Reactive Power Sources for Steady-state Voltage Control (정상상태 전압제어를 위한 UPFC와 조상설비의 협조)

  • Park, Ji-Ho;Lee, Sang-Duk;Jyung, Tae-Young;Jeong, Ki-Seok;Baek, Young-Sik;Seo, Gyu-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.921-928
    • /
    • 2011
  • This paper presents a new method of local voltage control to achieve coordinative control among UPFC(Unified Power Flow Controller) and conventional reactive compensation equipments, such as switched-shunt and ULTC(Under-Load Tap Changing) transformer. Reactive power control has various difficult aspects to control because of difficulty of system analysis. Recently, the progress of power electronics technologies has lead to commercial availability of several FACTS(Flexible AC Transmission System) devices. The UPFC(Unified Power Flow Controller) simultaneously allows the independent control of active and reactive power flows as well as control of the voltage profile. When conventional reactive power sources and UPFC are used to control system voltage, the UPFC reacts to the voltage deviation faster than the conventional reactive power sources. Keeping reactive power reserve in an UPFC during steady-state operation is always needed to provide reactive power requirements during emergencies. Therefore, coordination control among UPFC and conventional reactive power sources is needed. This paper describe the method to keep or control the voltage of power system of local area and to manege reactive power reserve using PSS/E with Python. The result of simulation shows that the proposed method can control the local bus voltage within the given voltage limit and manege reactive power reserve.