• Title/Summary/Keyword: Steady-State Flow Test

Search Result 168, Processing Time 0.025 seconds

A study on the heat dissipation of diesel engine (디이젤기관의 방열에 관한 연구)

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.39-50
    • /
    • 1980
  • This paper presents the variations obtained in heat flow rate and engine performance of a four-stroke cycle Diesel engine when there were changes in the temperature of cooling water, compression ratio, injection timing of fuel, and other factors. Heat dissipation of engine cylinder was calculated by the heat transfer coefficient of Nusselt's empirical equation and the analysis of distribution of temperature in cylinder barrel was obtained by the finite element method of two-dimensional steady state heat conduction. In this experiment, the out side temperature of cylinder liner was measured by the data logger, and the temperature distribution of liner was computed by the analysis of triangular finite element model under the assumption due to surface heat flux of cylinder inner surface. The results obtained by this study are as follows. Under the given operating condition, the temperature distribution of cylinder liner by using finite element method shows that the mean temperature of barrel is in accordance with the experimental results of Eichelberg and temperature difference is lower than 4.23.deg. C. The heat dissipation of engine decrease in accordance with the decrease of piston mean velocity, compression ratio, and the increase of coolant temperature. Influence on the delay of injection timing of fuel brings about the decrease of heat rejection over the cylinder at constant test conditions.

  • PDF

Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine

  • Tian, Wenlong;Mao, Zhaoyong;Ding, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.782-793
    • /
    • 2018
  • A small-scale horizontal axis hydrokinetic turbine is designed, manufactured and studied both experimentally and numerically in this study. The turbine is expected to work in most of China's sea areas where the ocean current velocity is low and to supply electricity for remote islands. To improve the efficiency of the turbine at low flow velocities, a magnetic coupling is used for the non-contacting transmission of the rotor torque. A prototype is manufactured and tested in a towing tank. The experimental results show that the turbine is characterized by a cut-in velocity of 0.25 m/s and a maximum power coefficient of 0.33, proving the feasibility of using magnetic couplings to reduce the resistive torque in the transmission parts. Three dimensional Computational Fluid Dynamics (CFD) simulations, which are based on the Reynolds Averaged Navier-Stokes (RANS) equations, are then performed to evaluate the performance of the rotor both at transient and steady state.

Evaluation of Ground Effective Thermal Properties and Effect of Borehole Thermal Resistance on Performance of Ground Heat Exchanger (지중 유효 열물성 산정 및 지중열교환기 성능에 대한 보어홀 열저항의 영향)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.32-40
    • /
    • 2012
  • Geothermal heat pump(GHP) systems use vertical borehole heat exchangers to transfer heat to and from the surrounding ground via a heat carrier fluid that circulates between the borehole and the heat pump. An Important feature associated with design parameters and system performance is the local thermal resistances between the heat carrier flow channels in the borehole and the surrounding ground. This paper deals with the in-situ experimental determination of the effective thermal properties of the ground. The recorded thermal responses together with the line-source theory are used to determine the thermal conductivity and thermal diffusivity, and the steady-state borehole thermal resistance. In addition, this paper compares the experimental borehole resistance with the results from the different empirical and theoretical relations to evaluate this resistance. Further, the performance simulation of a GHP system with vertical borehole heat exchangers was conducted to analyze the effect of the borehole thermal resistance on the system performance.

Prediction of Aerodynamic Stability Derivatives of Shell Configuration of Missile Using CFD Method (CFD를 이용한 유도탄 덮개 형상의 공력 미계수 예측)

  • Kang, Eunji
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.363-370
    • /
    • 2020
  • In this study, pitching stability derivatives of the conical shell configuration is predicted using commercial CFD code. Unsteady flow analysis with forced harmonic motion of the model is performed using overset mesh. The test is conducted about Basic finner missile configuration. The static and dynamic stability derivatives are good agreement with available experimental data. As the same way, a conical shell is analyzed in Mach number 1.6 and various reduced frequency. The static and dynamic derivatives are obtained from the time-pitching moment coefficient histories in each of four cases of mean angle of attack. The variation of reduced frequency is not affected static and dynamic derivatives. Increasing the mean angle of attack, static derivatives are increased slowly. Comparison of the Cm curves at the steady and unsteady state results shows that the Cm curve including the damping effect is lower than otherwise case, approximately 9-18 %.

A Study On Component Map Generation Of A Gas Turbine Engine Using Genetic Algorithms (유전자 알고리즘을 이용한 가스터빈 엔진의 구성품 성능선도 생성에 관한 연구)

  • Kong Chang-Duk;Kho Seong-Hee;Choi Hyeon-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.195-200
    • /
    • 2004
  • In this study, a component map generation method using experimental data and the genetic algorithms are newly proposed. In order to generate the performance map for components of this engine, after obtaining engine performance data through many experimental tests, and then the third order equations which have relationships the mass flow function the pressure ratio and the isentropic efficiency as to the engine rotational speed were derived by using the genetic algorithms. A steady-state performance analysis was peformed with the generated maps of the compressor by the commercial gas turbine performance analysis program GASTURB(1). In comparison, it was found that the component maps can be generated from the experimental test data by using the genetic algorithms, and it was confirmed that the analysis results using the generated maps were very similar to those using the scaled maps from the GASTURB.

  • PDF

Monitoring Anaerobic Reductive Dechlorination of TCE by Biofilm-Type Culture in Continuous-Flow System (연속흐름반응조에서 바이오필름형태의 탈염소화 미생물에 의한 TCE분해 모니터링)

  • Park, Sunhwa;Han, Kyungjin;Hong, Uijeon;Ahn, Hongil;Kim, Namhee;Kim, Hyunkoo;Kim, Taeseung;Kim, Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.49-55
    • /
    • 2012
  • A 1.28 L-batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloroethene (TCE) were operated for 120 days and 56 days, respectively, to study the effect of formate as electron donor on anaerobic reductive dechlorination (ARD) of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 ${\mu}mol$ TCE was completely degraded in the presence of 20% hydrogen gas ($H_2$) in less than 8 days by anaerobic dechlorination mixed-culture (300 mg-soluble protein), Evanite Culture with ability to completely degrade tetrachloroethene (PCE) and -TCE to ETH under anaerobic conditions. Once the formate was used as electron donor instead of hydrogen gas in batch or chemostat system, the TCE-dechlorination rate decreased and acetate production rate increased. It indicates that the concentration of hydrogen produced in both systems is possibly more close to threshold for homoacetogenesis process. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. Through the protein monitoring, we confirmed an increase of microbial population during the reactor operation. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 ${\mu}mol/L$) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at 18 days of HRT, but TCE was completely degraded at 36 days of HRT without accumulation of the injected-TCE during the left of experiment period, getting $H_2$ from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after beginning of CFSTR operation, it reached steady-state in the presence of excessive formate. We also evaluated microbial dynamic of the culture at different chemical state in the reactor by DGGE (denaturing gradient gel electrophoresis).

A Development of Test Method on the Energy Consumption Efficiency of Domestic Gas Boiler below 70 kW (70 kW 이하 가정용 가스보일러 에너지소비효율 실험방법 개발)

  • Park, Chanil;Kim, Laehyun
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.73-82
    • /
    • 2016
  • The energy consumption efficiency in a variety of operational test mode was considered for domestic gas boiler below 70 kW. The energy efficiency test carried out in the experimental conditions similar to the actual operation status was analyzed and compared with the current Korean efficiency test method. Four types of test modes for each boiler(Non-condensing and condensing boiler) were carried out in the condition of laboratory mode(full load, steady state) and actual operating mode. Futhermore divided into two operational status for each of these, it was applied by maximum gas consumption and consumer sales conditions. Test equipment has the function referred to gas boiler standards, such as KS or European standard EN. The equipment should be continuously measured and record the measuring factors which are the flow volume of gas and water, laboratory temperature, water flow volume for heating, return water volume after heating and quantity of the exhaust gases(CO, NO, $NO_2$). The experimental results were found that non-condensing boiler efficiency of laboratory mode is about 10% higher than that of actual mode. In case of condensing boiler, the efficiency of laboratory condition is about 20% higher than that of the actual using conditions. I suggest that the government will gradually take the efficiency test method considering the actual conditions.

Study on the performance improvement of a Main Oxidizer shut-off Valve (CC 산화제 개폐밸브 성능향상에 관한 연구)

  • Bae, Young-Woo;Kim, Do-Hyung;Hong, Moon-Geun;Lee, Soo-Yong;Jang, Ki-Won
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.63-72
    • /
    • 2010
  • MOV(Main Oxidizer shut-off Valves) control the combustion of launch vehicle systems by the supply and the isolation of liquid oxygen to a main combustion chamber in launch vehicle systems. Moreover, the MOV should secure a constant flow rate of liquid oxygen for combustion instability in the steady operational state. Although it has been showed that a EM(Engineering Model) with a high discharge coefficient value compared with the TM(Technology Model) fills the overall performance requirements, additional design modifications in some critical parts of the EM were conducted to improve the performance. The configurations of the pressure-control body, the middle flange, and the rips of the inlet body of the EM were modified and the performance tests have been performed with test models. Consequently, the intended improvements have been verified by the performance tests.

A Study on the Outside Rotor Type Induction Motor (외측회전형 유도전동기에 관한 연구)

  • 김현수;배철오;김종수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.812-818
    • /
    • 2003
  • This paper presents a developed outside rotor type induction motor for the fan. Nearly all of the induction motors consist of two parts, rotor and stator, and the position of rotor is generally inside of stator. However, the rotor of the developed induction motor is located outside of stator. It is believed that the outside rotor type induction motor is suitable for the fan due to its large inertia, that is, it is considered that the change of air flow rate resulting from input power or load fluctuation is reduced. In this paper, the two tests which are suitable to obtain the electrical parameters of the outside rotor type induction motor were described, then various parameters of outside rotor type induction motor were measured. These are the locked rotor test and no load test. By using these tests, it was possible to determine the parameters which are presented in the steady-state equivalent-circuit of the outside rotor type induction motor. Load test of induction motor was carried out using a dynamometer and the torque-speed curve was obtained. It is believed that the results of this paper can be used for the development of the outside rotor type induction motor.

A study on the Normal Steady State Operation Characteristics of PV System Based on the Test Device (태양광전원용 시험장치를 이용한 정상상태 운용특성에 관한 연구)

  • Hasan, Md.Mubdiul;Munkbaht, Munkbaht;Kim, Byung-Ki;Rho, Dae-Seok
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.512-516
    • /
    • 2012
  • Recently the Korean government's green energy growth policy has been taken at the national level due to the sufficient supply of renewable energy. Some specific technique should be taken in consideration for the operation of the grid voltage and power quality management. In this case, there may have some chance of operational problems. Typical problems arise when grid-connected solar power produced by Pacific sunshine. The power flow in the reverse direction can create overvoltage on the distribution line and gives value of malfunction on the system. Line voltage and overvoltage adjustment practice can stop these symptoms occurred. Under these circumstances, this paper presents an interconnection test devices for photovoltaic(PV) systems composed of distribution system simulator, PV system simulator and control and monitoring systems using the LabVIEW S/W, and simulates the customer voltage characteristics considering the 3 parameters on the introduction capacity for PV systems, system configuration and Power factor. This paper also proposes a new calculation algorithm for voltage profile to make comparison between calculation values and test device values. The results show that the simulation results for the normal operation characteristics of PV systems which are very practical and effective.

  • PDF