• 제목/요약/키워드: Steady flow

검색결과 2,036건 처리시간 0.029초

엔진대상시험을 통한 텀블측정방식의 상관성 및 유의성에 관한 연구 (Correlations among Different Tumble Measuring Methods and Significance of Tumble Ratios from Steady Flow Rig on SI Engine Combustion)

  • 이시훈;김명진
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.43-49
    • /
    • 2006
  • Optimizing in-cylinder flow such as tumble or swirl is one of the key factors to develop better internal combustion engines. Especially, the tumble, which is more dominant flow in current high performance gasoline engines, has significant effects on the fuel consumptions and exhaust emissions under part load conditions. The first step for the tumble optimization is to find an accurate but cost-effective way to measure the tumble ratio. From this point of view, tumble ratios from three different measuring methods were compared and correlated in this research. Steady flow rig, water rig, and PIV were utilized for that purpose. Engine dynamometer test was also performed to find out the effect of the tumble. The results show that the tumble ratios from those methods are well correlated and that the steady flow rig is the effective method to measure the tumble despite its limitations.

판형 열교환기에서 맥동유동에 의한 열전달 촉진에 관한 실험적 연구 (Heat Transfer Enhancement by Pulsating Flow in a Plate Heat Exchanger)

  • 김도규;강병하;김석현
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.199-206
    • /
    • 2004
  • The heat transfer enhancement by pulsating flow in a plate heat exchanger has been experimentally investigated in this study. The effect of the pulsating flow, such as pulsating frequency and flow rate on the heat transfer as well as pressure drop in a plate heat exchanger has been studied in detail. Reynolds number in cold side of a plate heat exchanger is varied 100∼530 while that of hot side is fixed at 620. The pulsating frequency is considered in the range of 5∼30 Hz. The results of the pulsating flow are also compared with those of steady flow. It is found that the average heat transfer rate as well as pressure drop is increased as flow rate is increased for both steady flow and pulsating flow cases. When pulsating flow is applied to the plate heat exchanger, heat transfer could be substantially increased in particular ranges of pulsating frequency or Strouhal number; St=0.36∼0.60 and pressure drop is also increased, compared with those of steady flow. However, in the region of low pulsating frequency or high pulsating frequency, heat transfer enhancement is in meager. Heat transfer enhancement map is suggested based on Strouhal number and Reynolds number of pulsating flow.

정상유동 장치에서 유동 특성 평가 방법에 대한 연구(5) - 평가위치의 영향 (Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(5)-Effect of Evaluation Position)

  • 조시형;엄인용
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.179-189
    • /
    • 2017
  • This paper is the fifth investigation on the methods of evaluating flow characteristics in a steady flow bench. In previous studies, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation may lead to serious problems. In addition, though the velocity profiles were improved as the measuring position went downstream, the distributions were far from ideal regardless of the valve angle and evaluation position. The eccentricities were also not sufficiently small to disregard the effect on impulse swirl meter (ISM) measurement. Therefore, the effect of these distribution and eccentricity changes according to the positions needs to be analyzed to discuss the method of flow characteristics estimation. In this context, the effects of evaluation position on the steady flow characteristics were studied. For this purpose, the swirl coefficient and swirl ratio were assessed and compared via measurement of the conventional ISM and calculation based on the velocity by particle image velocimetry(PIV) from 1.75B, 1.75 times bore position apart from the cylinder head, to the 6.00B position. The results show that the swirl coefficients by ISM strictly decrease and the curves as a function of the valve lift become smooth and linear as the measuring position goes downstream. However, the values through the calculation based on the PIV are higher at the farther position due to the approach of the tangential velocity profile to ideal. In addition, there exists an offset effect between the velocity distribution and eccentricity in the low valve lift range when the coefficients are estimated based on the swirl center. Finally, the curve of the swirl ratio by ISM and by PIV evaluation as a function the measuring position intersect around 5.00B plane except at $26^{\circ}$ valve angle.

좌관상동맥 분지부내의 정상혈류와 박동성혈류의 유동특성비교 (Comparison of Steady and Physiological Blood Flow Characteristics in the Left Coronary Artery Bifurcation)

  • 서상호;유상신;권혁문;노형운
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1995년도 추계학술대회
    • /
    • pp.57-60
    • /
    • 1995
  • The objective of this investigation is to understand the role of hemodynamics in the formation and development of atherosclerosis lesions in the human left coronary artery This study also aims to compare the blood flow characteristics of steady and physiological flows. Three dimensional, steady and physiological flows of blood in the left coronary artery are simulated using the Finite Volume Method. Apparent viscosity of blood is represented as a function of shear rate by the Carreau model. Distributions of velocity, pressure and shear stress in tile left coronary artery bifurcation are presented to compare tile steady and physiological flow characteristics.

  • PDF

맥동유동이 판형 열교환기 성능에 미치는 영향 (Effects of Pulsating Flow on the Performance of a Plate Heat Exchanger)

  • 강병하;김도균;박경근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1479-1484
    • /
    • 2003
  • The heat transfer enhancement by pulsating flow in a plate heat exchanger has been experimentally investigated in this study. The effect of the pulsating flow, such as pulsating frequency and flow rate, on the heat transfer as well as pressure drop in a plate heat exchanger has been studied in detail. Reynolds number in cold side of a plate heat exchanger is varied $100{\sim}530$ while that of hot side is fixed at 620. The pulsating frequency is considered in the range of $5{\sim}30$ Hz. The results of the pulsating flow are also compared with those of steady flow. It is found that the average heat transfer rate as well as pressure drop is increased as flow rate is increased for both steady flow and pulsating flow cases. When pulsating flow is applied to the plate heat exchanger, heat transfer could be substantially increased in particular ranges of pulsating frequency or Strouhal number; $St=0.36{\sim}0.60$ and pressure drop is also increased, compared with those of steady flow.

  • PDF

반고형 식품류의 정상유동특성 및 동적 점탄성 (Steady Shear Flow and Dynamic Viscoelastic Properties of Semi-Solid Food Materials)

  • 송기원;장갑식
    • 유변학
    • /
    • 제11권2호
    • /
    • pp.143-152
    • /
    • 1999
  • 본 연구에서는 Rheometrics Fluids Spectrometer(RFS II)를 사용하여 세 종류의 상용 반고형 식품(마요네즈, 토마토 케찹, 와사비)의 정상유동특성 및 소진폭 전단변형하에서의 동적 점탄성을 광범위한 전단속도와 각주파수 영역에서 측정하였다. 이들 측정결과로부터 정상유동특성의 전단속도 의존성 및 동적 점탄성의 각주파수 의존성을 보고하였다. 그리고 항복응력의 항을 갖는 몇 가지 점소성 유동모델을 사용하여 정상유동특성을 정량적으로 평가하고 이들 모델의 적용성을 비교.검증하였다. 나아가서 수정된 형태의 지수법칙 관계식을 도입하여 정상유동특성(비선형 거동)과 동적 점탄성(선형 거동)간의 상관관계에 대해 검토하였다. 이상의 연구를 통해 얻어진 결과를 요약하면 다음과 같다. (1) 반고형 식품류는 상당한 크기의 항복응력을 갖는 점소성 물질로서 전단속도가 증가할수록 정상류점도가 급격히 감소하는 shear-thinning 거동을 나타낸다. (2) Herschel-Bulkley 모델, Mizrahi-Berk 모델 및 Heinz-Casson 모델은 반고형 식품류의 정상유동거동을 잘 기술할 수 있다. 이들 중에서도 Heinz-Casson 모델이 가장 우수한 적용성을 갖는다 (3) 반고형 식품류는 임계 전단속도를 경계로 shear-thinning 특성이 변화한다. 즉 낮은 전단속도에 비해 높은 전단속도 영역에서 분산입자 응집체의 구조파괴가 더욱 활발하게 진행되어 보다 현저한 shear-thinning 특성을 나타낸다. (4) 저장 탄성률 및 손실탄성률은 양자 모두 각주파수가 증가할수록 점차로 증가하나 각주파수 의존성은 그다지 크지 않다. 또한 광범위한 각주파수 영역에서 탄성적 성질이 점성적 성질에 비해 보다 우세하게 나타난다. (5) 정상류점도, 동적점도 및 복소점도는 모두 power-law 모델의 거동을 잘 만족한다. 또한 정상유동특성과 동적 점탄성간의 상관관계는 수정된 형태의 지수법칙 관계식에 의해 잘 기술될 수 있다.

  • PDF

Numerical description of start-up viscoelastic plane Poiseuille flow

  • Park, Kwang-Sun;Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • 제21권1호
    • /
    • pp.47-58
    • /
    • 2009
  • We have investigated the transient behavior of 1D fully developed Poiseuille viscoelastic flow under finite pressure gradient described by the Oldroyd-B and Leonov constitutive equations. For analysis we employ a simple $2^{nd}$ order discretization scheme such as central difference for space and the Crank-Nicolson for time approximation. For the analysis of the Oldroyd-B model, we also apply the analytical solution, which is obtained again in this work in terms of elementary solution procedure simpler than the previous one (Waters and King, 1970). Both models demonstrate qualitatively similar solutions, but their eventual steady flowrate exhibits noticeable difference due to the absence or presence of shear thinning behavior. In the inertialess flow, the flowrate instantaneously attains a large value corresponding to the Newtonian creeping flow and then decreases to its steady value when the applied pressure gradient is low. However with finite liquid density the flow field shows severe fluctuation even accompanying reversals of flow directions. As the assigned pressure gradient increases, the flowrate achieves its steady value significantly higher than its value during oscillations after quite long period of time. We have also illustrated comparison between 1D and 2D results and possible mechanism of complex 2D flow rearrangement employing a previous solution of [mite element computation. In addition, we discuss some mathematical points regarding missing boundary conditions in 2D modeling due to the change of the type of differential equations when varying from inertialess to inertial flow.

넓은 수평 환형 공간에서의 진동하는 자연 대류로의 천이 : Pr=0.1 (Transition to Oscillatory Natural Convection in a Wide-gap Horizontal Cylindrical Annulus: Pr=0.1)

  • 유주식;김용진;엄용균
    • 한국전산유체공학회지
    • /
    • 제5권3호
    • /
    • pp.40-46
    • /
    • 2000
  • Natural convection in a wide-gap horizontal annulus is considered, and the transition of flows from steady to oscillatory convection is investigated for the fluid with Pr=0.1. The unsteady streamfunction-vorticity equation is solved with finite difference method. As Rayleigh number is increased, the steady crescent-shaped flow bifurcates to a time-periodic flow with like-rotating eddies. And afterwards, a transition to an oscillatory multicellular flow with a counter-rotating eddy on the top of the annulus occurs. A transition from steady to an oscillatory flow occurs, but dual solutions and hysteresis phenomena are not observed.

  • PDF

수평 원주형 환형 내에서의 자연 대류 유동의 천이: Pr=0.2 (Transition of Natural Convective Flows in a Horizontal Cylindrical Annulus: Pr=0.2)

  • 유주식;하대홍
    • 대한기계학회논문집B
    • /
    • 제25권6호
    • /
    • pp.804-810
    • /
    • 2001
  • Transition of flows in natural convection in a horizontal cylindrical annulus is investigated for the fluid with Pr=0.2. The unsteady streamfunction-vorticity equation is solved with finite difference method. As Rayleigh number is increased, the steady crescent-shaped eddy flow bifurcates to a time-periodic flow with like-rotating eddies. After the first Hopf bifurcation, however, a reverse transition from oscillatory to a steady flow occurs by the flow pattern variation. Hysteresis phenomenon occurs between the solution branches of up-scan and down-scan stages, and dual solutions with one steady and one oscillatory flow are found. Overall Nusselt of the flows at the flows at the down-scan stage is greater than that at the up-scan stage.

Investigation of Cavitation Models for Steady and Unsteady Cavitating Flow Simulation

  • Tran, Tan Dung;Nennemann, Bernd;Vu, Thi Cong;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권4호
    • /
    • pp.240-253
    • /
    • 2015
  • The objective of this paper is to evaluate the applicability of mass transfer cavitation models and determine appropriate numerical parameters for cavitating flow simulations. CFD simulations were performed for a NACA66 hydrofoil at cavitation numbers of 1.49 and 1.00, corresponding to steady sheet and unsteady sheet/cloud cavitating regimes using the Kubota and Merkle cavitation models. The Merkle model was implemented into CFX by User Fortran code. The Merkle cavitation model is found to give some improvements for cavitating flow simulation results for these cases. Turbulence modeling is also found to have an important contribution to the prediction quality of the simulations. The relationship between the turbulence viscosity modification, in order to take into account the local compressibility at the vapor/liquid interfaces, and the predicted numerical results is clarified. The limitations of current cavitating flow simulation techniques are discussed throughout the paper.