• 제목/요약/키워드: Steady flow

검색결과 2,037건 처리시간 0.03초

횡 방향으로 회전하는 구 주위의 유동특성 (Laminar Flow past a Sphere Rotating in the Transverse Direction)

  • 김동주;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.83-86
    • /
    • 2002
  • Numerical simulations are conducted for laminar flow past a sphere rotating In the transverse direction, in order to investigate the effect of the rotation on the characteristics of flow over a sphere. The Reynolds numbers considered are Re=100, 250 and 300 based on the free-stream velocity and the sphere diameter, and the rotational speeds are in the range of $0{\leq}{\omega}{\leq}1$, where ${\omega}^{\ast}$ is the maximum velocity on the sphere surface normalized by the free-stream velocity. At ${\omega}^{\ast}=0$ (without rotation), the flow past the sphere experiences steady axisymmeoy, steady planar-symmetry and unsteady planar-symmetry, respectively, at Re=100, 250 and 300. However, with rotation, the flow becomes planar-symmetric for all the cases investigated and the symmetry plane is orthogonal to the axis of the rotation. The flow is also steady or unsteady depending on both the Reynolds number and the rotational speed, and the vortical structures behind the sphere are significantly modified by the rotation. For example, at Re=300, hairpin vortices completely disappear in the wake at ${\omega}^{\ast}=0.4\;and\;0.6$, and at ${\omega}^{\ast}=1$ vortical structures of a high frequency are newly generated due to the shear layer instability. It is also shown that with increasing rotational speed, the time-averaged drag and lift coefficients increase monotonically.

  • PDF

소음기내의 정상상태 및 맥동파 배기가스 유입에 의한 유동특성에 관한 연구 (A Study on the Flow Characteristics of Steady State and Pressure Variation inside the Mulffler with the Inflow of Pulsating Exhaust Gas)

  • 김민호;정우인;천인범
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.150-159
    • /
    • 1999
  • Exhaust system is composed of several parts. Among, them , design of muffler system strongly influences on engine efficiency and noise reduction. So , through comprehension of flow characteristics inside muffler is necessary . In this study , three-dimensional steady and unsteady compressible flow analysis was performed to understand the flow characteristics, pressure loss and amplitude variation of pulsating pressure. The computational grid generation was carried out using commercial preprocessor ICEM CFD/CAE. And the three-dimensional fluid motion inside the muffler was analyzed by STAR-CD, the computational fluid dynamics code. RNG k-$\varepsilon$ tubulence model was applied to consider the complexity of the geometry and fluid motion. The steady and unsteady flow field inside muffler such as velocity distribution, pulsating pressure and pressure loss was examined. In case of unsteady state analysis, velocity of inlet region was converted from measured pulsating pressure. Experimental measurement of pressure and temperature was carried out to provide the boundary and initial condition for computational study under three engine operating conditions. As a result of this study, we could identify the flow characteristics inside the muffler and obtain the pressure loss, amplitude variation of pulsating exhaust gas.

  • PDF

단일 프레임 입자 추적법을 이용한 흡입 2밸브 가솔린 기관의 실린더 내 정상 유동 해석 (Analysis of in-cylinder steady flow for dual-intake-valve gasoline engine using single-frame particle tracking velocimetry)

  • 이창식;이기형;임경수;전문수
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.650-658
    • /
    • 1997
  • Analysis and control of intake charge motion such as swirl and tumble are very important factors in improving the gasoline engine performance. In this paper, single-frame PTV (particle tracking velocimetry) is used to investigate intake tumble patterns in a steady flow test rig of gasoline engine with dual-intake-valve and pent-roof combustion chamber. Intake tumble pattern is quantified in accordance with blockage ratio of TIV (tumble intensifying valve) with single- frame PTv.The view of the instantaneous 2-D velocity field gives a realistic understanding of in-cylinder flow field. Thus it is confirmed that PTV is a effective tool in engine design. In conventional port, two tumble structures appear clearly, and the larger one is observed under the exhaust valve side and the smaller is right below the intake valve side. The larger vorticity is observed in TIV port, thus it is concluded that TIV have an effect on intensified tumble motion in cylinder flow.

트윈스크롤 터보과급기에서 맥동유동의 질량유량 측정 (Mass Flow Rate Measurement of Pulsating Flow in a Twin-Scroll Turbocharger)

  • 정진은;전세훈
    • 한국산학기술학회논문지
    • /
    • 제20권12호
    • /
    • pp.723-729
    • /
    • 2019
  • 터보과급기는 엔진에 장착하여 연비를 개선하는 효과적인 장치로 디젤엔진과 가솔린엔진 모두에서 광범위하게 사용되고 있다. 본 연구에서는 승용차용 가솔린엔진에 사용되는 트윈스크롤 터보과급기에서 발생하는 맥동유동의 질량유량을 측정하였다. 자체 설계 제작한 맥동유동장치를 사용하여 맥동이 있는 비정상상태에서 유동의 질량유량을 측정하였고, 맥동이 없는 정상상태의 질량유량과 비교 분석하였다. 맥동유동장치는 회전하는 상판과 고정된 하판을 사용하여 변하는 엔진의 배기밸브 유효면적을 반영하였다. 맥동이 있는 비정상상태 질량유량을 측정하기 위하여 차압식 압력계를이용한 오리피스 유량계를 사용하였다. 이때 기체의 온도와 절대압력을 측정하여 기체 밀도 변화를 고려하였다. 터보과급기의 저속 성능을 분석하기 위하여 압축공기를 사용하여 터보과급기 회전속도 60,000rpm에서 100,000rpm의 범위에서 측정을 수행하였다. 비정상상태의 질량유량은 정상상태와 비교하여 크게 다른 결과를 보였다. 정상상태 질량유량 계수는 터빈 팽창비가 증가함에서 따라 증가하지만, 비정상상태 질량유량 계수는 정상상태 값 주변의 히스테리시스 루프를 형성하며 변화량은 정상유동 기준 최대 5.0배이다. 이것은 맥동유동에 의하여 터빈 볼류트 공간에서 충진과 방출이 일어나기 때문이다.

배출물 저감을 위한 촉매변환기 내의 3차원 유동해석 (Three-Dimensional Flow Analysis of Catalytic Converter for Reducing Emission)

  • 정수진;김우승
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.55-65
    • /
    • 1998
  • A numerical and experimental study of three-dimensional steady incompressible non-reacting flow inside various dual-monolith catalytic converters has been conducted for achievement of performance improvement, reduction of light-off time and longer service life by improving the flow uniformity within the monolith. In this study, the effects of curvature of inlet exhaust pipe and monolith brick length on the flow uniformity and pressure drop within monolith were numerically investigated. The computations are confirmed by measurements of steady flow. The agreement between computations and experiment was relatively good. The result of this study shows that curvature of inlet exhaust pipe and monolith brick length gave a great effect on the flow uniformity and the shorter the brick length, the lower flow uniformity and the less pressure drop.

  • PDF

판형 열교환기의 맥동유동에 의한 열전달 향상에 관한 수치해석연구 (A NUMERICAL STUDY ON HEAT TRANSFER ENHANCEMENT BY PULSATILE FLOW IN A PLATE HEAT EXCHANGER)

  • 이명성;허남건;강병하
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.93-96
    • /
    • 2006
  • The heat transfer enhancement by pulsatile flow in the plate heat exchanger has been investigated numerically in the present study. The numerical study was performed in the range of the mass flux from 0.04 to 0.12 kg/s. The results showed that the pulsatile flow produces resonating vortex shedding at the groove sharp edges and a strong transient vortex rotation within the grooved channels. As a result, the mixing between the trapped volume in the grooved cavity and the main stream was enhanced. Good agreements between the predictions and measured data are obtained in steady flow. And the heat transfer of pulsatile flow is about 2.4 times than steady flow when frequency is 10 Hz and the mass flux of cold side is 0.04 kg/s.

  • PDF

플레넘 챔버 내의 유동 특성에 관한 실험적 연구 (An Experimental Study on the Flow characteristics in the Plenum Chamber)

  • 정재우;이기형;이창식
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.24-31
    • /
    • 1999
  • The MPI engine becomes increasingly popular because it meets two requirements of stringent pollutant emission and the lower fuel consumption. Even though supplies the same amount of fuel to each cylinder , it is hard to precisely control the air-duel ration due to the different amount of air flowing into each cylinder. The uniformity of air-fuel ration in each cylinder is considerably affected by the plenum chamber configuration . This study is focused on experimentally analyzing the flow characteristics within the plenum chamber In the present experiment , steady and valve dynamic state flow tests are performed and the flow field inside the plenum chamber is visualized and measured by utilizing a laser sheet visualization technique and a PTV method. These measured results indicate that the flow structure in the plenum chamber is highly influenced by the plenum chamber configurations, suction flow rates, crank speeds and so on.

  • PDF

Three-Dimensional Flow Simulations of End-to-Side Vascular Anastomoses : Flow Dynamic Aspect on Preferential Development of Intimal Hyperplasia or Thrombosis

  • Kim, Young H.;Krishnan B.Chandran
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권3호
    • /
    • pp.253-258
    • /
    • 1994
  • Three-dimensional steady and pulsatile flows in an end-to-side anastomosis were investigated using a finite difference method in order to understand the flow dynamics in the preferential development of distal anastomotic intimal hyperplasia or thrombosis. Steady flow results revealed that a double helical vortex was formed in the host artery and flow recirculations near toe find heel regions were restricted due to the secondary flow. Oscillating wall shear stress with significant secondary flow might be flow dynamic reason of developing intimal hyperplasia or thrombosis near the anastomotic region.

  • PDF

EFFECT OF INTAKE PORT GEOMETRY ON THE IN-CYLINDER FLOW CHARACTERISTICS IN A HIGH SPEED D.I. DIESEL ENGINE

  • LEE K. H.;RYU I. D.;LEE C. S.;REITZ R. D.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, the HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a HSDI diesel engine with a 4-valve type cylinder head. The four kinds of cylinder head were manufactured to elucidate the effect of intake port geometry on the in-cylinder flow characteristics. The steady flow characteristics such as coefficient of flow rate $(C_{f})$, swirl ratio (Rs), and mass flow rate (m,) were measured by the steady flow test rig and the unsteady flow velocity within a cylinder was measured by PIV. In addition, the in-cylinder flow patterns were visualized by the visualization experiment and these results were compared with simulation results calculated by the commercial CFD code. The steady flow test results indicated that the mass flow rate of the cylinder head with a short distance between the two intake ports is $13\%$ more than that of the other head. However, the non-dimensional swirl ratio is decreased by approximately $15\%$. As a result of in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the position of swirl center was changed with crank angle. As the piston moves to near the TDC, the swirl center corresponded to the cylinder center and the velocity distribution became uniform. In addition, the results of the calculation are in good agreement with the experimental results.

열수 추출 미역액의 정상유동특성에 관한 연구 (Studies on the Steady Shear Flow Properties of Sea Mustard Aqueous Extracts)

  • 최희숙;오성훈
    • 한국식품영양학회지
    • /
    • 제13권1호
    • /
    • pp.78-82
    • /
    • 2000
  • For the purpose of investigation of the food processing fittness of the sea mustard aqueous extracts, the steady shear flow have been measured over a wide range of shear rate using a Brookfield digital viscometer(SPDL21). The rheological behaviors of the sea mustard aqueous extracts which were extracted at 10$0^{\circ}C$ for 2 hours exhibited pseudoplastic behavior with yield stress. In the test of the relationship between temperature and apparent viscosity of samples at 10 rpm decreased along with the increment of temperature. The sea mustard aqueous extracts appeared greatly temperature dependent characteristics(Ea=1.51 ㎉/mole).

  • PDF