• Title/Summary/Keyword: Steady Blood Flow

Search Result 44, Processing Time 0.025 seconds

Velocity and Shear Stress Distributions for Steady and Physiological Flows in the Abdominal Aorta/lLIAC Artery Bifurcation (복부대동맥/장골동맥 분기혈관내 정상 및 박동성 유동의 속도와 전단응력분포)

  • 서상호
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.179-186
    • /
    • 1997
  • Steady and physiological flows of a Newtonian fluid and blood in the abdominal gorta/iliac artery bifurcation are numerically simulated to understand the etiology and pathogenesis of atherosclerosis. Distributions of velocity, pressure, and wall shear stress in the bifurcated arterial vessel model are calculated to investigate the differences of flow characteristics between steady and physiological flows and to compare flow characteristics of blood with that of a Newtonian fluid For the given Reynolds number the flow characteristics of physiological flows for a Newtonian fluid and blood in the bifurcated arterial vessel are quite different from thcse of steady flows. No flow separation or flow reversal in the bifurcated region appears downstream of a stenosis during the acceleration phase. However, during the deceleration phase the flow exhibits flow separation in the outer walls of daugtlter branches, which extends to the entire wall region.

  • PDF

A Study on the Shear Stress Distribution of the Steady and Physiological Blood Flows (정상 및 박동성 혈류의 전단응력분포에 관한 연구)

  • Suh, S.H.;Yoo, S.S.;Roh, H.W.;Shim, J.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.113-116
    • /
    • 1995
  • Steady and physiological flows of a Newtonian fluid and blood in the bifurcated arterial vessel are numerically simulated. Distributions of velocity, pressure and wall shear stress in the bifurcated arterial vessel are calculated to investigate the differences between steady and physiological flows. For the given Reynolds number physiological flow characteristics of a Newtonian fluid and blood in the bifurcated arterial vessel are quite different from those of steady flows. No flow separation or flow reversal in the bifurcated region in the downstream after stenosis appears during the acceleration phase. Also, no recirculation region is seen for steady flows. However, during the deceleration phase the flow began to exhibit flow reversal, which is eventually extended to the entire wall region.

  • PDF

Comparison of Steady and Physiological Blood Flow Characteristics in the Left Coronary Artery Bifurcation (좌관상동맥 분지부내의 정상혈류와 박동성혈류의 유동특성비교)

  • Suh, S.;Yoo, S.S.;Kwon, H.M.;Roh, H.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.57-60
    • /
    • 1995
  • The objective of this investigation is to understand the role of hemodynamics in the formation and development of atherosclerosis lesions in the human left coronary artery This study also aims to compare the blood flow characteristics of steady and physiological flows. Three dimensional, steady and physiological flows of blood in the left coronary artery are simulated using the Finite Volume Method. Apparent viscosity of blood is represented as a function of shear rate by the Carreau model. Distributions of velocity, pressure and shear stress in tile left coronary artery bifurcation are presented to compare tile steady and physiological flow characteristics.

  • PDF

Effect of 2-Methylaminoethyl-4,4'-Dimethoxy-5, 6, 5' ,6'-Dimethyl­enedioxybiphenyl-2-Carboxylic Acid-2'-Carboxylate Monohydro­chloride (DDB-S) on Indocyanine Green (ICG) Clearance in Rats

  • Lee Kyoung-Jin;Kim Jae-Ryung;Lee Chi-Ho
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.115-119
    • /
    • 2005
  • The clearance of ICG, a known hepatic blood flow marker was investigated in rats in order to examine whether DDB-S influences hepatic blood flow. The effect of DDB-S on the protein binding and blood-to-plasma partition of ICG was measured. The steady-state plasma concentration of ICG was monitored before and after co-administration of various concentration of DDB-S, and ICG clearance was estimated from the steady-state concentration and the infusion rate of ICG. There was no significant difference in protein binding and blood-to-plasma partition of ICG with and without addition of DDB-S (10, 20, and 40 ${\mu}g/mL)$. When ICG was infused into DDB-S pretreated rats, the steady-state concentrations of ICG decreased and the calculated ICG clearance increased. However, no dose-dependency of ICG Css on DDB-S Css was observed. Since DDB-S did not affect the protein binding and blood-to-plasma partition of ICG, the increased clearance of ICG with co-administration of DDB-S seems to be due to the increased hepatic blood flow by DDB-S.

Pulsatile Flow Analyses of Newtonian Fluid and Non-Newtonian Pluid in Circular Tube (원관내 뉴턴유체와 비뉴턴유체의 맥동유동특성)

  • Cho, Min-Tae;Roh, Hyung-Woon;Suh, Sang-Ho;Kim, Jae-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1585-1596
    • /
    • 2002
  • The objectives of the present study are to numerically and experimentally investigate the steady and pulsatile flow phenomena in the circular tubes, to quantitatively compare the flow characteristics of Newtonian and non-Newtonian fluids, and to find meaningful hemodynamic information through the flow analysis in the human blood vessels. The particle image velocimetry is adopted to visualize the flow fields in the circular tube. and the results from the particle image velocimetry are used to validate the results of the numerical analysis. In order to investigate the blood flow phenomena in the circular tube. constitutive equations, which are suitable to describe the rheological properties of the non-Newtonian fluids. are determined, and the steady and pulsatile momentum equations are solved by the finite volume prediction. The velocity vectors of the steady and pulsatile flow in the circular tube obtained by the particle image velocimetry arc in good agreement with those by the numerical analysis. For the given mass flow rate. the axial velocity profiles of the Newtonian and the non-Newtonian fluids appear differently. The pulsatile flow phenomena of the Newtonian and the non-Newtonian fluids are quite different from those of the steady flow.

3-D Flow Analysis of Blood and Blood Substitutes in a Double Branching Model (이중 분지관내 혈액 및 혈액대용유체의 3차원 유동해석)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Roh, Hyung-Woon
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.187-196
    • /
    • 1997
  • The three-dimensional flow analysis using the finite volume method is presented to compare the steady flow characteristics of blood with those of blood substitutes such as water and aqueous polymer solution in an idealized double branching model. The model is used to simlllate the region of the abdominal aorta near the celiac and superior mesenteric branches. Apparent viscosities of blood and the aqueous Separan solution are represented as a function of shear rate by the Carreau model, Water and aqueoiu Separan AP-273 500wppm solution are frequently used as blood substitutes in vitro experiments. Water is a typical Newtonian fluid and blood and Separan solution are non-Newtonian fluids. Flow phenomena such as velocity distribution, pressure variation and wall shear stress distribution of water, blood and polymer solution are quite different due to differences of the rheological characteristics of fluids. Flow phenomena of polymer solution are qualitatively similar to those of blood but the phenomena of water are quite different from those of blood and polymer solution. It is recommended that a lion-Newtonian fluid which exhibits very similar rheological behavior to blood be used in vitro experiments. A non-Newtonian fluid whose rheological characteristics are very similar to those of blood should be used to obtain the meaninylll hemodynamic data for blood flow in vitro experiment and by numerical analysis

  • PDF

Blood Flow Characteristics in the Abdominal Aortic Bifurcation with Stenosis (협착이 발생된 복부대동맥 분기부에서의 혈액운동특성)

  • Yoo, S.S.;Suh, S.H.;Roh, H.W.;Jo, M.T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.109-112
    • /
    • 1995
  • The three dimensional, steady flows of blood and blood analogue fluids in the abdominal aortic bifurcation are simulated using the finite volume method. The objective of this investigation is to understand the generation and progression of site-specific atherosclerosis from a hydrodynamic point of view. Due to complexity of blood in conducting experimental study, aqueous polymer solutions are used as the substitutional fluids. For comparison purpose of the flow characteristics of blood and substitutional fluids, rheologically different fluids such as water soluble polymers of Carbopol-934 and Separan AP-273 are employed for the numerical simulation. In order to understand the role of hydrodynamics in the formation and development of atherosclerosis lesions flow velocities, pressures and shear stresses along the vessel are calculated for steady flows.

  • PDF

No Effect of Diltiazem on the Hepatic Clearance of Indocyanine Green in the Rats

  • Joo, Eun-Hee;Lee, Yong-Bok
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.411-417
    • /
    • 1998
  • In order to investigate the effect of the pretreatment with various doses of diltiazem (DTZ) on the pharmacokinetics of indocyanine green (ICG) at steady state, especially the hepatic blood clearance due to the change of hepatic blood flow, the following experiments were carried out with ICG, a hepatic function test marker, not metabolized in liver and only excreted in bile. The intravenous bolus injection ($3,780\mu\textrm{g}$/kg) and the constant-rate infusion ($10,100\mu\textrm{g}$/kg/hr) of ICG into the left femoral vein were made in order to check the steady-state plasma concentration ($C_{ss} of $10\mu\textrm{g}$/ml) of ICG at 20, 25 and 30 min. Following a 90-min washout period, the intravenous bolus injection (108, 430, 860 and $1,720\mu\textrm{g}$/kg) and the constant-rate infusion (108, 433, 866 and $1,730\mu\textrm{g}$/kg/hr) of DTZ into the right femoral vein were made and the achievement of the steady-state plasma levels ($C_{ss} of 50, 200, 400 and 800 ng/ml) of DTZ were conformed at 60, 70 and 80 min. During the steady state of DTZ, the intravenous bolus injection ($3,780\mu\textrm{g}$/kg) and the constant-rate infusion ($10,200\mu\textrm{g}$/kg/hr) of ICG into the left femoral vein were made and also the steady-state plasma concentration of ICG was checked at 20, 25 and 30 min. The plasma concentrations of DTZ and ICG were determined using a high performance liquid chromatographic technique. At the steady state, the hepatic blood clearance of ICG was obtained from the plasma concentration and blood-to-plasma concentration ratio ($R_B$) of ICG. The pretreatment with various doses of DTZ did not influence the plasma concentrations, $R_B$ and plasma free fraction ($f_p$) of ICG. So the hepatic blood clearance of ICG was independent of concentration of DTZ. The hepatic blood clearance of ICG could be affected by both hepatic bood flow and hepatic intrinsic clearance. But there was no change of the hepatic blood clearance of ICG between the control and the DTZ-pretreated rats in this study. So it may be suggested that DTZ does not influence hepatic blood flow.

  • PDF

A Numerical Analysis on the Hemodynamic Characteristics in the blood vessel with Stenosis (협착부가 존재하는 혈관의 유동 특성에 관한 수치 해석적 연구)

  • Jung, H.;Park, C.G.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1987-1992
    • /
    • 2004
  • Hemodynamics behavior of the blood flow is influenced by the presence of the arterial stenosis. If stenosis is present in an artery, normal blood flow is disturbed. In the present study, characteristics of steady and pulsatile flow of non-Newtonian fluid, the effects of stenosised geometry are analyzed by numerical simulation. One interesting point is that non-symmetric solutions were obtained at severity stenosis, although the stenosis and the boundary condition were all axisymmetric.

  • PDF

Study on the Blood Flow Characteristics in the Stenosed Coronary Artery (협착이 발생된 관상동맥내 혈류특성에 관한 연구)

  • Roh, H.W.;Suh, S.H.;Yoo, S.S.;Kwon, H.M.;Kim, D.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.111-115
    • /
    • 1997
  • The objective of present study is to obtain information about stenosis effects on the blood flow in the coronary artery bifurcation. The three dimensional steady of blood in the coronary artery bifurcation with stenosis and without stenosis are simulated using the finite volume method. Apparent viscosity of blood is represented as a function of shear rate by the Carreau models. Velocities vectors and wall shear stresses along the branch tubes with stenosis are compared with those of without stenosis for steady flows. Flow phenomena in the stenosed branch tubes are discussed extensively.

  • PDF