• 제목/요약/키워드: Stator flux oriented

검색결과 65건 처리시간 0.024초

2차 보간법을 사용한 유도전동기 최대효율제어 (Maximum Efficiency Control of Induction Motor Drives Using Quadratic Interpolation Method)

  • 신명호
    • 조명전기설비학회논문지
    • /
    • 제23권9호
    • /
    • pp.62-66
    • /
    • 2009
  • 3개의 자속에 대한 유도전동기의 입력을 계산한 후 3점을 2차 보간하여 2차 함수를 만들고, 입력이 최소가 되는 새로운 자속을 구한 후, 이 자속을 이용하여 다시 2차 보간하여 입력이 최소가 되는 자속을 구하는데, 새로운 점을 사용한 2차 보간을 수렴조건을 만족할 때까지 반복해서 입력이 최소가 되는 자속을 구하는 방법을 제안한다. 시뮬레이션 결과 최대효율제어를 위한 자속으로 신속한 수렴이 가능함을 보인다.

적응관측기에 의한 유도전동기의 센서리스 속도제어 (Sensorless Speed Control of Induction Motor using Adaptive Observer)

  • 오상호;김성환;진대원;권영안
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.109-111
    • /
    • 1997
  • A sensorless drive of induction motor has several advantages; low cost and mechanical simplicity. This paper investigates a field-oriented control method without speed and flux sensors. The control strategy is to design an adaptive state observer for flux estimation and to estimate the rotor speed from the estimated rotor flux and stator current. The entire control algorithm including space vector PWM is implemented by software of the digital signal processor TMS320C31. The experimental results indicate good speed responses.

  • PDF

매입형 영구자석 동기전동기의 고성능 약계자 제어 (The High Performance Flux Weakening Control of Interior Permanent Magnet Synchronous Motor)

  • 이중호;김장목;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.1051-1053
    • /
    • 1993
  • In this paper, the new flux weakening contol algorithm for the drive system of Interior Permanent Magnet Synchronous Motor(IPMSM) is proposed which includes the feedback of torque and current The torque error is used in order to control the current phase angle in the field weakening control. The proposed control method is compared with the stator flux oriented vector control method. Through the simulation the prominence of the proposed control method is verified.

  • PDF

Implementation of Grid Connection of DFIG for Wind Power Generation System

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.143-145
    • /
    • 2006
  • This paper presents an overall control algorithm for a grid-connected wind-power generation system using a DFIG(doubly-fed induction generator) fed by back-to-back PWM converters. The control of DFIG is based on a stator-flux oriented vector control. The system enables not only fast and smooth synchronization but also high performance regulation of active and reactive power. Experimental results shows The feasibility of the control algorithm.

  • PDF

약계자 영역에서 유도전동기의 속도센서리스 벡터제어 (Speed Sensorless Vector Control of Induction Machine in the Field Weakening Region)

  • 신명호;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.405-408
    • /
    • 2001
  • This paper investigates the problem of the speed estimation of conventional speed sensorless stator flux-oriented induction machine drive in the field weakening region and proposes a new speed estimation scheme to estimate speed exactly in transients in the field weakening region. The error included in the estimated rotor speed is removed by not a low pass filter but Kalman filter.

  • PDF

집중권 5상 유도 전동기의 고정자 자속 기준 직접 벡터제어 (Stator-Flux-Oriented Vector Control of Five-Phase Induction Motors with Concentrated Windings)

  • 정건희;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.130-131
    • /
    • 2014
  • 집중권 5상 유도전동기에서 기본파 $d_1-q_1$와 3고조파 $d_3-q_3$ 공간의 비동기화시 자속밀도의 파형이 왜곡되어 자속이 포화되고 철손이 증가한다. 이러한 현상을 방지하기 위해 두 좌표축의 동기화가 필요하다. 본 논문에서는 자속각의 동기화를 고려한 고정자 자속기준 벡터제어를 제안하고 시뮬레이션을 통하여 그 유효성을 입증한다.

  • PDF

확장영역 전기자동차 응용을 위한 유도전동기의 고효율 운전 특성 (The High Efficiency Operating Characteristics of the Induction Motor for Extended Range Electric Vehicle Applications)

  • 유두영;손진근;전희종;최욱돈
    • 전기학회논문지P
    • /
    • 제65권4호
    • /
    • pp.273-279
    • /
    • 2016
  • In this paper, a high-performance control of the induction motor for electric car was implemented to escape dependence of the rare earth magnet. Proposed high-efficiency control algorithm is a Direct Rotor Field-Oriented Control method that is insensitive to the fluctuation of motor parameters. In the DRFOC method, we need to compensate fluctuation of stator transient inductance and magnetizing inductance caused by the magnetic saturation of induction motor in high-speed area. This paper proposes Back-EMF Observer based on stator current estimator of Luenberger style. Motor control system applied the Voltage Feedback Flux Weakening Control method for high-speed operation. The proposed algorithm was verified through tests by the power train of Extended Range Electric Vehicle consists of induction motor and differential gear.

과전류 부하에서 5상 농형 유도전동기의 정수 특성 (Parameters Estimation Characteristics of Five-Phase Squirrel-Cage Induction Motor within Over Current Load)

  • 김민회
    • 조명전기설비학회논문지
    • /
    • 제29권7호
    • /
    • pp.38-46
    • /
    • 2015
  • This paper propose a variable parameter estimations for variable over current load of five-phase squirrel-cage induction motor(IM) to servo control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, torque command of current components, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental within variable over current load at rated input frequency. There are results of stator winding measurement, no-load test, locked-rotor test, variable over current load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

5상 농형 유도전동기의 정수 추정 (Parameters Estimation of Five-phase Squirrel-Cage Induction Motor)

  • 김민회
    • 전기학회논문지P
    • /
    • 제61권4호
    • /
    • pp.199-205
    • /
    • 2012
  • This paper propose a improved parameter estimations of five-phase squirrel-cage induction motor(IM) for speed control system on field oriented control(FOC). In order to high performance control of ac the motors using a FOC and DTC(direct torque control) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, rotor position and speed estimation, and so on. We are suggest a estimation method of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental. There are results of stator winding test, no-load test, locked rotor test, and obtained equivalent circuits using manufactured experimental apparatus. For presenting the superior performance of the speed control system in adapted the parameters, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[KW] IM.

주파수 변화에 따른 5상 농형 유도전동기의 정수 추정 (Parameters Estimation of Five-Phase Squirrel-Cage Induction Motor in Changing Variable Frequency)

  • 김민희
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.241-247
    • /
    • 2014
  • This paper propose a variable parameter estimations of five-phase squirrel-cage induction motor(IM) for speed control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental of variable input power frequency. There are results of stator winding test, no-load test, locked-rotor test, variable actual load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.