• Title/Summary/Keyword: Stator Slot Design

Search Result 64, Processing Time 0.034 seconds

The Copper Rotor Die-casting of Single Phase Induction Motor and the Stator Design for Reducing Loss (단상유도전동기의 동 다이캐스팅과 손실 저감을 위한 고정자 설계)

  • Lee, Sang-Hoon;Kim, Ki-Chan;Kim, Kwang-Soo;Kim, Won-Ho;Kim, Soo-Yong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.705-706
    • /
    • 2008
  • There has been, in recent years, effort to make cast copper rotors for industrial use of induction motors. Because the incorporation of copper for the conductor bars and end rings of the induction motor in place of aluminum would result in attractive improvements in motor energy efficiency. The purpose of this method is a reducing the copper loss as using higher conductivity of copper. In this paper as the single phase induction motor is studied, the stator slots and coil turn number is designed for adjusting the slot fill factor and improving its efficiency. At this time design is basis on calculation of reducing loss. And finally this paper shows that the before and after result is compared and analyzed.

  • PDF

Optimal Design of Field-Excitation Flux-Switching Synchronous Machine for ISG Application (계자권선형 12슬롯-10극 자속 역전식 동기 전동기의 최적 설계)

  • Koo, Bon-Kil;Jung, Il-Su;Nam, Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.23-24
    • /
    • 2013
  • In recent years, ISG (Integrated Starter and Generator) system receives a great attention for electric electrification of normal gasoline vehicle. As a cost-effect machine design, an ISG without a permanent magnet is considered. A 12slot-10pole field-excitation flux-switching synchronous machine (FEFSSM) is designed and analyzed via JMAG. The active parts such as the field excitation coil and armature coil are located on the stator. The rotor part consisting of single piece iron makes it more robust and suitable to apply for high speed motor drive system application coupled with reduction belt. The design target is the motor with a maximum torque of 40Nm, a maximum power of 10kW and a maximum speed of 14000 rpm. In this paper, design optimization method is proposed for high torque capability.

  • PDF

The Optimization of Rotor Shape for Constant Torque Improvement and Radial Magnetic Force Minimization (IPMSM의 정토크 특성 향상 및 가진력 최소화를 위한 회전자 형상 최적화)

  • Cho, Gyu-Won;Ji, Seung-Hun;Park, Kyoung-Won;Jang, Ki-Bong;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.64-69
    • /
    • 2012
  • In this paper, the optimal design of notch and barrier was carried out in order to improve characteristics of constant torque with minimizing the cogging torque occurred by teeth and slot structure. Optimized design was carried out by design of experiment and various characteristics including torque were studied by finite element method(FEM). In addition, in order to verify resonance frequency, natural frequency of the stator was analyzed by modal analysis.

Design of linear synchronous motor with slotted structure (치-슬롯을 갖는 직선형 동기 전동기의 설계 특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Choi, Jang-Young;Park, Ji-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.197-199
    • /
    • 2006
  • This paper presents a analytical field solutions for the general class of Linear Brushless DC(LBLDC) motors with PM mover and 3-phase winding stator. In our magnetic field analysis, we have adopted an approach which can treat both magnetized material and winding from the each field analysis by magnetic vector potential considering 2-Dimensional slot modeling. Therefore, we give accurate analytical formulas and object function for design and parameters estimation by its magnetic field.

  • PDF

Characteristic Analysis of Permanent Magnet Linear Synchronous Motor with Halbach Array and Iron Core (영구 자석 Halbach 배열 가동자로 구성된 철심형 직선 영구자석 동기 전동기의 특성 해석)

  • Jang, Seok-Myeong;You, Dae-Joon;Lee, Sung-Ho;Jang, Won-Bum;Kwon, Jeong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.72-74
    • /
    • 2003
  • This paper presents a design and analysis solutions for the general class of iron-cored permanent magnet linear synchronous motor with Halbach (PMLSM). In our design and analysis, rotor consisting of permanent magnets rotor and slot less iron-cored coil stator are treated in a uniform way via vector potential. For one such motor structure, we give analytical formulas for its magnetic field, back electromotive force, inductance of winding coil, and trust force. We also provide performance comparisons of three types according to iron-cored and PM array.

  • PDF

The Characteristic Analysis of Concentrated Winding Synchronous Reluctance Motor Vs. distributed Winding Synchronous Reluctance Motor through Experiments (실험을 통한 집중권선형 SynRM과 분포권 SynRM의 특성분석)

  • Lee, Byeong-Du;Lee, Jung-Ho;Lee, Seung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1051-1052
    • /
    • 2011
  • This paper deals with optimum design criteria to minimize the torque ripple of a concentrated winding Synchronous Reluctance Motor(SynRM) using Response Surface Methodology(RSM). The feasibility of using RSM with the finite element method(FEM) in practical engineering problem is investigated with omputational examples and comparison between the fitted response and the results obtained from an analytical solution according to the design variables of stator and rotor in concentrated winding SynRM(6slot). The focus of this paper is the efficiency evaluation on the basis of load condition in a Concentrated Winding Synchronous Reluctance Motor and distributed Winding Synchronous Reluctance Motor.

  • PDF

The Design and Analysis of a Permanent Magnet Reluctance Motor with High Efficiency (고효율 영구자석 릴럭턴스 전동기의 설계 및 해석)

  • Zhang, Peng;Kwon, Soon-O;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.775-776
    • /
    • 2006
  • Based on the requirement of high power and efficiency in automobile systems, this paper describes an investigation for the optimum design of a permanent magnet reluctance motor(PRM), and then the characteristics of this kind of motor is compared with that of a interior permanent magnet(IPM) motor. The IPM of 4-pole with 6-slot is redesigned into a PRM, which has the same stator and different rotor structure with IPM. Through finite element analysis(FEA) and equivalent circuit method, the PRM has higher salient ratio, higher efficiency at high speed, and lower iron loss compared with IPM.

  • PDF

A study on the Design and Analysis of Double Cylinder motor (Double Cylinder Motor설계 및 해석에 관한 연구)

  • Maeng, Kyung-Ho;Park, Chang-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.60-63
    • /
    • 2004
  • BLDC Motor has many advantages but the motor has slots in Stator like as other conventional Motors therefore cannot be eliminated torque ripple which is not acceptable for a special purpose. For high speed and high efficiency and no torque ripple is a Double Cylinder Motor suggested which has a air-gap-winding and rotating yoke with magnet. Because Airgap winding needs no slot and no ironloss is made in rotating yoke. In this paper describes design and construction and theoretical and experimental investigation of a Double Cylinder Motor.

  • PDF

FEM analysis of 700W Universal Motor and Device to Optimal Design (700 W 급 Universal Motor의 유한요소 해석과 최적설계 방향)

  • Song, Hyuk-Jin;Shin, Pan-Seok;Koo, Jin-Ho;Lee, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.247-249
    • /
    • 1998
  • This paper has proposed an optimized universal motor for improving its performance and cost using FEM program. To do this, various design parameters are set such as air gap length, shape of stator and pole shoe, rotor slot, rotor shaft diameter, etc. As results, the optimized model has made good improvement compared with those of the initial.

  • PDF

Characteristics Analysis for Reduction of Cogging Torque in a Novel Axial Flux Permanent Magnet BLDC Motor (평판형 영구 자석 BLDC 전동기의 코깅 토크 저감은 위한 특성 해석)

  • Jo, Won-Young;Lee, In-Jae;Kim, Byung-Kuk;Kim, Tae-Hyun;Hwang, Dong-Won;Cho, Yun-Hyun;Koo, Dae-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1180-1182
    • /
    • 2005
  • In this paper, the design and field analysis of the novel axial flux type permanent magnet(AFPM) motor with double stator and single rotor are investigated. The various design schemes of AFPM based on 3D finite element method are proposed. The effects of slot shapes, various magnetization of PM, and skewing on the cogging torque and average torque have been investigated in detail. From the results, we can improve the cogging torque and average torque characteristics.

  • PDF