• Title/Summary/Keyword: Statoliths

Search Result 4, Processing Time 0.025 seconds

Plant Cells on Earth and in Space

  • Braun, Markus;Sievers, Andreas
    • Animal cells and systems
    • /
    • v.4 no.3
    • /
    • pp.201-214
    • /
    • 2000
  • Two quite different types of plant cells are analysed with regard to transduction of the gravity stimulus: (i) Unicellular rhizoids and protonemata of characean green algae; these are tube-like, tip-growing cells which respond to the direction of gravity. (ii) Columella cells located in the center of the root cap of higher plants; these cells (statocytes) perceive gravity. The two cell types contain heavy particles or organelles (sataoliths) which sediment in the field of gravity, thereby inducing the graviresponse. Both cell types were studied under microgravity conditions ($10^{-4}$/ g) in sounding rockets or spacelabs. From video microscopy of living Chara cells and different experiments with both cell types it was concluded that the position of statoliths depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by actin microfilaments. The actomyosin system may be the missing link between the gravity-dependent movement of statoliths and the gravity receptor(s); it may also function as an amplifier.

  • PDF

Effect of Oryzalin on the Gravitropic Response and Ethylene Production in Maize Roots (옥수수 일차뿌리에서 oryzalin이 굴중성 반응과 에틸렌 생성에 미치는 효과)

  • Kim, Chungsu;Mulkey, Timothy J.;Kim, Jong-Sik;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1223-1229
    • /
    • 2015
  • Oryzalin is a dinitroaniline herbicide, which disrupts the arrangement of microtubules. Microtubules and microfilaments are cytoskeletal components that are thought to play a role in the sedimentation of statoliths and the formation of cell walls. Statoliths regulate the perception of gravity by columella cells in the root tip. To determine the effect of oryzalin on the gravitropic response, ethylene production in primary roots of maize was investigated. Treatment with 10-4 M oryzalin to the root tip inhibited the growth and gravitropic response of the roots. However, the treatment had no effect on the elongation zone of the roots. An application of 10-4 M oryzalin for 15 hr to the root tip caused root tip swelling. The application of 1-aminocycopropane-1-carboxylic acid (ACC), a precursor of ethylene, to the root tip also inhibited the gravitropic response. To understand the role of oryzalin in the regulation of the growth and gravitropic response of roots, ethylene production in the primary roots of maize was measured following treatment with oryzalin. Oryzalin stimulated ethylene production via the activation of ACC oxidase (ACO) and ACC synthase (ACS), and it increased the expression of ACO and ACS genes. Indole-3-acetic acid (IAA) played a key role in the asymmetric elongation rates observed during gravitropism. The results suggest that oryzalin alters the gravitropic response of maize roots through modification of the arrangement of microtubules. This might reduce the distribution of IAA in the upper and lower sides of the elongation zone and increase ethylene production, thereby inhibiting growth and gravitropic responses.

Effect of Colchicine on the Growth and Gravitropic Response via Ethylene Production in Arabidopsis Roots

  • Kim, Seon Woong;Park, Arom;Ahn, Dong Gyu;Kim, Soon Young
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.597-603
    • /
    • 2018
  • Inhibitory effect of colchicine on growth and gravitropic responses in Arabidopsis root was explored to find whether there was an involvement of ethylene production. It has been known that cytoskeleton components are implicated in sedimentation of statoliths to respond to gravitropism and growth. The root growth was inhibited by 25% and 40% over control for 8 hr treatment of colchicine at a concentration of $10^{-5}M$ and $10^{-7}M$, respectively. The roots treated with colchicine at the concentration of $10^{-7}M$ showed the same pattern as control in 3 hr, however, gravitropic response was decreased in the next 5 hr. The colchicine treatment at the concentration of $10^{-5}M$ inhibited the gravitropic response resulting in $60^{\circ}$ of curvature. In order to better understand the role of colchicine, the production of ethylene was measured with and without the treatment of colchicine. Colchicine increased the ethylene production by 20% when compared to control via the activation of ACC oxidase and ACC synthase activity. These results suggest that the inhibition of the growth and gravitropic responses of Arabidopsis roots by the treatment of colchicine could be attributed to the rearrangement of microtubule, and increase of ethylene production.

The Effect of Oryzalin on Growth and Gravitropism in Arabidopsis Roots (Oryzalin이 애기장대 뿌리 생장과 굴중성 반응에 미치는 작용)

  • Go, Jin Gyu;Park, Sun Ill;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.109-114
    • /
    • 2021
  • Oryzalin is a dinitroaniline herbicide that has been known to disrupt microtubules. Microtubules and microfilaments are components of cytoskeletons that are implicated in plant cell growth, which requires the synthesis of cellulose when cell walls elongate. In addition, microtubules are also involved in the sedimentation of statoliths, which regulate the perception of gravity in the columella cells of root tips. In this study, we investigated the effect of oryzalin on the growth and gravitropic response of Arabidopsis roots. The role of ethylene in oryzalin's effect was also examined using these roots. Treatment of oryzalin at a concentration of 10-4 M completely inhibited the roots' growth and gravitropic response. At a concentration of 10-6 M oryzalin, root growth was inhibited by 47% at 8 hr when compared to control. Gravitropic response was inhibited by about 38% compared to control in roots treated with 10-6 M oryzalin for 4 hr. To understand the role of oryzalin in the regulation of root growth and gravitropic response, we measured ethylene production in root segments treated with oryzalin. It was found that the addition of oryzalin stimulated ethylene production through the activation of ACC oxidase and ACC synthase genes, which are key components in the synthesis of ethylene. From these findings, it can be inferred that oryzalin inhibits the growth and gravitropic response of Arabidopsis roots by stimulating ethylene production. The increased ethylene alters the arrangement of the microtubules, which eventually interferes with the growth of the cell wall.