• Title/Summary/Keyword: Statistical predictions

Search Result 208, Processing Time 0.02 seconds

Statistical Model to Describe Boiling Phenomena for High Heat Flux Nucleate Boiling and Critical Heat Flux

  • Ha, Sang-Jun;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.230-235
    • /
    • 1996
  • The new concept of dry area formation based on Poisson distribution of active nucleation sites and the concept of the critical active site density is presented. A simple statistical model is developed to predict the change of slope of the boiling curve up to critical heat flux (CHF) quantitatively. The predictions by the present model are in good agreement with the experimental data. Also it turns out that the present model well explains the mechanism on how the surface wettability influences CHF.

  • PDF

Interval estimation of mean value function using fuzzy approach

  • Kim, Daekyung
    • Journal of Applied Reliability
    • /
    • v.1 no.2
    • /
    • pp.175-181
    • /
    • 2001
  • Recently, the quality of software has become a major issue. The statistical models used in making predictions about the quality of software are termed software reliability growth models (SRGM). However, the existing SRGMs have not been satisfactory in predicting software reliability behavior (Keiller and Miller(1991), Keiller and Littlewood(1984), Musa(1987)). In this paper, we present a fuzzy-based interval estimation of software errors (failures).

  • PDF

Prediction of negative peak wind pressures on roofs of low-rise building

  • Rao, K. Balaji;Anoop, M.B.;Harikrishna, P.;Rajan, S. Selvi;Iyer, Nagesh R.
    • Wind and Structures
    • /
    • v.19 no.6
    • /
    • pp.623-647
    • /
    • 2014
  • In this paper, a probability distribution which is consistent with the observed phenomenon at the roof corner and, also on other portions of the roof, of a low-rise building is proposed. The model is consistent with the choice of probability density function suggested by the statistical thermodynamics of open systems and turbulence modelling in fluid mechanics. After presenting the justification based on physical phenomenon and based on statistical arguments, the fit of alpha-stable distribution for prediction of extreme negative wind pressure coefficients is explored. The predictions are compared with those actually observed during wind tunnel experiments (using wind tunnel experimental data obtained from the aerodynamic database of Tokyo Polytechnic University), and those predicted by using Gumbel minimum and Hermite polynomial model. The predictions are also compared with those estimated using a recently proposed non-parametric model in regions where stability criterion (in skewness-kurtosis space) is satisfied. From the comparisons, it is noted that the proposed model can be used to estimate the extreme peak negative wind pressure coefficients. The model has an advantage that it is consistent with the physical processes proposed in the literature for explaining large fluctuations at the roof corners.

Analysis on fatigue life distribution of composite materials (복합재료 피로 수명 분포에 관한 고찰)

  • 황운봉;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.790-805
    • /
    • 1988
  • Static strength and fatigue life scattering of glass fiber reinforced epoxy composite materials has been studied. Normal, lognormal, two-parameter and three-parameter Weibull distribution functions are used for strength and one-stress fatigue life distribution. The value of mean fatigue life is analysed using mean fatigue life, mean log fatigue life and expected value of 2 and 3-parameter Weibull distribution functions. Modification on non-statistical cumulative damage models is made in order to interpret the result of two-stress level fatigue life scattering. The comparison results show that 3-parameter Weibull distribution has better predictions in static strength and one-stress level fatigue life distributions. However, no advantage of 3-parameter Weibll distribution is found over 2-parameter Weibull distribution in two-stress level fatigue life predictions. It is found that two-stress level fatigue life prediction by the expanded equal rank assumption is close to the experimental data.

A Comparison between the TCM and the CDMQC on Air Quality Prediction (대기오염 예측에서 TCM과 CDMQC의 비교)

  • 송동웅;김면섭;신응배
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 1987
  • The Texas Climatological Model (TCM) Predicts long-term pollutant concentrations for a rectilinear array or receptors defined by the user. This paper describes the TCM and compares predictions from TCM with predictions from the Climatological Dispersion Model (CDMQC). A number of model runs have been made with the TCM and CDMQC using the same source inventories and sets of climatology. The concentrations predicted by these two models are compared and the result of several types of statistical analyses are reported. In most cases, the TCM predicts concentrations that are equivalent to those predicted by the CDMQC. However, in certain cases, the CDMQC tends to predict concentrations that are unrealistically high. In the computer time, the TCM requires about one-eights of the computer time used by the CDMQC.

  • PDF

A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets

  • Kar, Swapnasarit;Biswal, K.C.
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.397-409
    • /
    • 2020
  • The current study targets to estimate the contribution of the end-anchored FRP composites in resisting shear force using a soft computing tool i.e., adaptive neuro-fuzzy inference system (ANFIS). A total of 107 sets of data accumulated from literature was utilized for the development and evaluation of the current ANFIS model. A comparative analysis between the ANFIS predictions and the acquired experimental results has shown that the ANFIS predictions are in very good agreement with that of experimental ones. Additionally, the accuracy of the current ANFIS model has been weighed up against the estimates of nine widely adopted design guidelines. Based on various statistical parameters, it has been deduced that the effectiveness of the current ANFIS model is better than the considered design guidelines. Besides this, a parametric study was carried out to explore the combined effect of different parameters as well as the impact of individual parameters.

Prediction of the compressive strength of fly ash geopolymer concrete using gene expression programming

  • Alkroosh, Iyad S.;Sarker, Prabir K.
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.295-302
    • /
    • 2019
  • Evolutionary algorithms based on conventional statistical methods such as regression and classification have been widely used in data mining applications. This work involves application of gene expression programming (GEP) for predicting compressive strength of fly ash geopolymer concrete, which is gaining increasing interest as an environmentally friendly alternative of Portland cement concrete. Based on 56 test results from the existing literature, a model was obtained relating the compressive strength of fly ash geopolymer concrete with the significantly influencing mix design parameters. The predictions of the model in training and validation were evaluated. The coefficient of determination ($R^2$), mean (${\mu}$) and standard deviation (${\sigma}$) were 0.89, 1.0 and 0.12 respectively, for the training set, and 0.89, 0.99 and 0.13 respectively, for the validation set. The error of prediction by the model was also evaluated and found to be very low. This indicates that the predictions of GEP model are in close agreement with the experimental results suggesting this as a promising method for compressive strength prediction of fly ash geopolymer concrete.

Design Sensitivity Studies for Statistical Energy Analysis Modeling of Construction Vehicle Cab (통계적 에너지 해석 모델을 이용한 건설 장비 차실 설계에 관한 연구)

  • 채장범
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.609-615
    • /
    • 1998
  • In recent years there has been an increasing emphasis on shortening design cycles for bringing products to market. This requires the development of computer aided engineering tools which allow analysts to quickly evaluate the effect of design changes on noise, vibration, and harshness. Statistical Energy Analysis (SEA) modeling is a valuable tool for predicting noise and vibration as SEA models are inherently simpler and more robust than deterministic models. SEA modeling can be combined with design sensitivity analysis(DSA) to identify design changes which give the largest performance benefit. This paper describes SEA modeling of an equipment cab. SEA predictions are compared to test data, showing good agreement. The use of design sensitivity analysis in improving cab design is then demonstrated.

  • PDF

Integration of Heterogeneous Models with Knowledge Consolidation

  • Kim, Jin-Hwa;Bae, Jae-Kwon
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.571-575
    • /
    • 2007
  • For better predictions and classifications in customer recommendation, this study proposes an integrative model that efficiently combines the currently-in-use statistical and artificial intelligence models. In particular, by integrating the models such as Association Rule, Connection Frequency Matrix, and Rule Induction, this study suggests an integrative prediction model.

  • PDF

Waterborne Noise Prediction of the Reinforced Cylindrical Shell Using the SEA Technique (SEA 기법을 이용한 보강 원통형 셸의 수중방사소음 해석)

  • 배수룡;전재진;이헌곤
    • Journal of KSNVE
    • /
    • v.3 no.2
    • /
    • pp.155-161
    • /
    • 1993
  • The vibration generated by the machinery on board is transmitted to the hull and into the water. At the early design stage, the prediction of the hull vibration and the radiated noise level is very important to reduce their levels. In this study, SAE(Statistical Energy Analysis) technique is applied to predict structureborne noise level of the hull considering fluid loading. Rayleigh integral is applied to predict the radiated noise level. The results of comparision between the predictions and measurements for the reinforced cylindrical shell have shown good agreements.

  • PDF