• Title/Summary/Keyword: Statistical moment

Search Result 315, Processing Time 0.025 seconds

Comparison of Three Normalization Methods for 3D Joint Moment in the Asymmetric Rotational Human Movements in Golf Swing Analysis

  • Lee, Dongjune;Oh, Seung Eel;Lee, In-Kwang;Sim, Taeyong;Joo, Su-bin;Park, Hyun-Joon;Mun, Joung Hwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.289-295
    • /
    • 2015
  • Purpose: From the perspective of biomechanics, joint moments quantitatively show a subject's ability to perform actions. In this study, the effect of normalization in the fast and asymmetric motions of a golf swing was investigated by applying three different normalization methods to the raw joint moment. Methods: The study included 13 subjects with no previous history of musculoskeletal diseases. Golf swing analyses were performed with six infrared cameras and two force plates. The majority of the raw peak joint moments showed a significant correlation at p < 0.05. Additionally, the resulting effects after applying body weight (BW), body weight multiplied by height (BWH), and body weight multiplied by leg length (BWL) normalization methods were analyzed through correlation and regression analysis. Results: The BW, BWH, and BWL normalization methods normalized 8, 10, and 11 peak joint moments out of 18, respectively. The best method for normalizing the golf swing was found to be the BWL method, which showed significant statistical differences. Several raw peak joint moments showed no significant correlation with measured anthropometrics, which was considered to be related to the muscle coordination that occurs in the swing of skilled professional golfers. Conclusions: The results of this study show that the BWL normalization method can effectively remove differences due to physical characteristics in the golf swing analysis.

Biomechanical Analysis of Golf Driver Swing Motion According to Gender

  • Bae, Kang Ho;Lee, Joong Sook;Han, Ki Hoon;Shin, Jin Hyung
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • Objective: The purpose of this study is to investigate the differences in biomechanical variables of golf driving motion according to gender. Method: A total of 21 healthy golfers (11 men and 10 women) who have more than 5 years of professional experience and have been registered in the Korea Golf Association was recruited. A 250-Hz 8-camera motion capture system (MX-T20, Vicon, LA, USA) was used to capture the motion trajectories of a total of 42 reflective markers attached to the golfer's body and club. Moreover, two 1,000-Hz AMTI force plates (AMTI OR6-7-400, AMTI, MA, USA) were used to measure the ground reaction force. The mean and standard deviation for each parameter were then calculated for both groups of 21 subjects. SPSS Windows version 23.0 was used for statistical analysis. The independent t-test was used to determine the differences between groups. An alpha level of .05 was utilized in all tests. Results: There were differences in joint angles according to gender during golf driver swing. Men showed a statistically significantly higher peak joint angle and maximum range of angle in sagittal and frontal axis of the pelvis, hip, and knee. Moreover, women's swing of the pelvis and hips was found to have a pattern using the peak joint angle and range of angle in the vertical axis of the pelvis and hip. There were the differences in peak joint moment according to gender during golf driver swing. Men used higher joint moment in the downswing phase than women in the extensor, abductor, and external rotator muscles of the right hip; flexor and adductor muscles of left hip joint; and flexor and extensor muscles of the right knee. Conclusion: This result reveals that male golfers conducted driver swing using stronger force of the lower body and ground reaction force based on strength of hip and thigh than female golfers.

Biomechanical Analysis of Injury Factor According to the Change of Direction After Single-leg Landing

  • Kim, Jong-Bin;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.433-441
    • /
    • 2016
  • Objective: The purpose of this study was to understand the injury mechanism and to provide quantitative data to use in prevention or posture correction training by conducting kinematic and kinetic analyses of risk factors of lower extremity joint injury depending on the change of direction at different angles after a landing motion. Method: This study included 11 men in their twenties (age: $24.6{\pm}1.7years$, height: $176.6{\pm}4.4cm$, weight: $71.3{\pm}8.0kg$) who were right-leg dominant. By using seven infrared cameras (Oqus 300, Qualisys, Sweden), one force platform (AMTI, USA), and an accelerometer (Noraxon, USA), single-leg drop landing was performed at a height of 30 cm. The joint range of motion (ROM) of the lower extremity, peak joint moment, peak joint power, peak vertical ground reaction force (GRF), and peak vertical acceleration were measured. For statistical analysis, one-way repeated-measures analysis of variance was conducted at a significance level of ${\alpha}$ <.05. Results: Ankle and knee joint ROM in the sagittal plane significantly differed, respectively (F = 3.145, p = .024; F = 14.183, p = .000), depending on the change of direction. However, no significant differences were observed in the ROM of ankle and knee joint in the transverse plane. Significant differences in peak joint moment were also observed but no statistically significant differences were found in negative joint power between the conditions. Peak vertical GRF was high in landing (LAD) and after landing, left $45^{\circ}$ cutting (LLC), with a significant difference (F = 9.363, p = .000). The peak vertical acceleration was relatively high in LAD and LLC compared with other conditions, but the difference was not significant. Conclusion: We conclude that moving in the left direction may expose athletes to greater injury risk in terms of joint kinetics than moving in the right direction. However, further investigation of joint injury mechanisms in sports would be required to confirm these findings.

A Study on Modulation Classification of PSK Signals Based on Statistical Moments (통계적 모먼트에 의한 PSK 신호의 변조분류에 관한 연구)

  • 이원철;한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.6
    • /
    • pp.1004-1015
    • /
    • 1994
  • Modulation type classifier based on statistical moments has been successfully employed to classify PSK signals. Previously, the classifier developed utilizes the statistical moment of samples of the received signal phase, which may be difficult to extract from received signal. In this paper we propose a new moments-based classifier to classify PSK signals by using the moments of the demodulated signal for PSK. THe demodulated signal can be easily extracted from the conventional demodulation of PSK. The evaluation of the performance of the proposed classifier for PSK signals has been investigated in additive white Gaussian noise environment using the exact distribution of the demodulated signal. The performances of classifier in terms of probability of misclassification were evaluated. We found that the coherent system classifier gave 4dB improvement for BPSK and 3dB for QPSK over noncoherent system classifier, when the probability of misclassification is 10 and m equals to 4.

  • PDF

Detection of Spliced Image Using Run-length of Wavelet Coefficients and Statistical Moments (웨이블릿 계수의 런-길이와 통계적 모멘트를 이용한 접합 영상 검출)

  • Kim, Tae-Hyung;Han, Jong-Goo;Park, Tae-Hee;Eom, Il-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.152-159
    • /
    • 2014
  • In this paper, we introduce a run-length for wavelet coefficients and present a image splicing detection method using the statistical moments for the wavelet run-length. Various pre-processings for the suspicious image are performed to emphasize the discontinuous edges caused by the image splicing. The proposed scheme has the merit that can exploit the various statistical characteristics of the wavelet transform. We extracted up to 72 features, and performed training and testing using SVM(support vector machine). Experimental results showed that the proposed method generates similar detection results compared to the existing methods. In addition, we showed the wavelet domain run-length is useful to detect the spliced image.

Performance Improvement of Steganalysis based on image Categorization Using Correlation Coefficient (상관계수를 이용한 영상의 범주화에 근거한 스테그분석의 성능 개선)

  • Park, Tae Hee;Eom, Il Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.221-227
    • /
    • 2013
  • This paper proposes an improved steganalysis method based on image categorization. In general, most steganalysis methods extract the statistical moments based features which contain the global natures of images regardless of their inherent characteristics. However, the steganalysis method based on the statistical moments leads to degraded performance by applying to images with different complexity. In this paper, we decompose an 8-bit image into an upper 4-bit plane and a lower 4-bit plane, and categorize the image with two classes according to the correlation coefficient between decomposed sub-images. Two independent steganalyses can be performed for the categorized images. Since our method uses independent steganalysis technique according to the image category, it can reduce the drawback of the steganalysis methods utilizing the statistical moments. The performance of the proposed scheme is compared with well-known four steganalysis methods. Experiment results show that the proposed scheme has higher detection rate than previous methods.

Ocean bottom reverberation and its statistical characteristics in the East Sea (동해 해역에서 해저면 잔향음 및 통계적 특징)

  • Jung, Young-Cheol;Lee, Keun-Hwa;Seong, Woojae;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.82-95
    • /
    • 2019
  • In this study, we analyzed the beam time series of ocean reverberation which was conducted in the eastsouthern region of East Sea, Korea during the August, 2015. The reverberation data was gathered by moving research vessel towing LFM (Linear Frequency Modulation) source and triplet receiver array. After signal processing, we analyzed the variation of ocean reverberation level according to the seafloor bathymetry, source/receiver depth and sound speed profile. In addition, we used the normalized data by using cell averaging algorithm and identified the statistical characteristics of seafloor scatterer by using moment estimation method and estimated shape parameter. Also, we analyzed the coincidence of data with Rayleigh and K-distribution probability by Kolmogorov-Smirnov test. The results show that there is range dependency of reverberation according to the bathymetry and also that the time delay and the intensity level change depend on the depths of source and receiver. In addition, we observed that statistical characteristics of similar Rayleigh probability distribution in the ocean reverberation.

The Application and Analysis of Scale Effect on Dynamic Flood Frequency Analysis (동역학적 홍수빈도 모형의 적용 및 해상도 영향 분석)

  • Mun, Jang-Won;Yu, Cheol-Sang;Kim, Jung-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.81-90
    • /
    • 2001
  • A dynamic flood frequency analysis model was proposed for the frequency analysis in ungaged catchment and applied to 6 subbasins in Pyungchang River basin. As the dynamic flood frequency model requires precipitation, rainfall loss system, and runoff analysis, we adopt the rectangular pulse model, the SCS formula, and the geomorphoclimatic IUH(GcIUH) for the application. Input data for the analysis was borrowed from the results of the statistical flood frequency analysis using L-moment method for the same catchment, and then the return period was estimated using the model. This result was also compared with the return period estimated from the statistical analysis. By comparing with the results from two cases, we found the dynamic flood frequency analysis gave higher estimates than those from statistical analysis for the whole subbasins. However, the dynamic flood frequency analysis model has a potential to be used for determining the design flood for small hydraulic structure in ungaged catchment because it uses only physical parameters for flood frequency analysis. And this model can be easily applicable to other watersheds as the scale effect is negligible.

  • PDF

Evaluation of extreme rainfall estimation obtained from NSRP model based on the objective function with statistical third moment (통계적 3차 모멘트 기반의 목적함수를 이용한 NSRP 모형의 극치강우 재현능력 평가)

  • Cho, Hemie;Kim, Yong-Tak;Yu, Jae-Ung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.545-556
    • /
    • 2022
  • It is recommended to use long-term hydrometeorological data for more than the service life of the hydraulic structures and water resource planning. For the purpose of expanding rainfall data, stochastic simulation models, such as Modified Bartlett-Lewis Rectangular Pulse (BLRP) and Neyman-Scott Rectangular Pulse (NSRP) models, have been widely used. The optimal parameters of the model can be estimated by repeatedly comparing the statistical moments defined through a combination of parameters of the probability distribution in the optimization context. However, parameter estimation using relatively small observed rainfall statistics corresponds to an ill-posed problem, leading to an increase in uncertainty in the parameter estimation process. In addition, as shown in previous studies, extreme values are underestimated because objective functions are typically defined by the first and second statistical moments (i.e., mean and variance). In this regard, this study estimated the parameters of the NSRP model using the objective function with the third moment and compared it with the existing approach based on the first and second moments in terms of estimation of extreme rainfall. It was found that the first and second moments did not show a significant difference depending on whether or not the skewness was considered in the objective function. However, the proposed model showed significantly improved performance in terms of estimation of design rainfalls.

Inverted exponentiated Weibull distribution with applications to lifetime data

  • Lee, Seunghyung;Noh, Yunhwan;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.227-240
    • /
    • 2017
  • In this paper, we introduce the inverted exponentiated Weibull (IEW) distribution which contains exponentiated inverted Weibull distribution, inverse Weibull (IW) distribution, and inverted exponentiated distribution as submodels. The proposed distribution is obtained by the inverse form of the exponentiated Weibull distribution. In particular, we explain that the proposed distribution can be interpreted by Marshall and Olkin's book (Lifetime Distributions: Structure of Non-parametric, Semiparametric, and Parametric Families, 2007, Springer) idea. We derive the cumulative distribution function and hazard function and calculate expression for its moment. The hazard function of the IEW distribution can be decreasing, increasing or bathtub-shaped. The maximum likelihood estimation (MLE) is obtained. Then we show the existence and uniqueness of MLE. We can also obtain the Bayesian estimation by using the Gibbs sampler with the Metropolis-Hastings algorithm. We also give applications with a simulated data set and two real data set to show the flexibility of the IEW distribution. Finally, conclusions are mentioned.