• Title/Summary/Keyword: Statistical efficiency

Search Result 1,209, Processing Time 0.025 seconds

Determination of Sampling Unit Size for Cultivation Area Survey using Remote Sensing Technology

  • Park, Jin-Woo;Shin, Gi-Eun;Lee, Suk-Hoon;Byun, Jong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.733-741
    • /
    • 2012
  • The successful launch of Arirang satellites allow the acquisition of high resolution satellite imagery of Korean territory and enables the transition from the conventional cultivation area survey method to new image based methods adopted in advanced nations. In this study, we suggested reasonable sizes of the primary sampling unit and the secondary sampling unit for the satellite imagery based sampling design in 8 provinces preselected for this research. The PSU size was determined mainly in consideration of intracorrelation that shows the degree of homogeneity within each cluster and the efficiency of the image process. For the SSU size, we considered the relative standard error and the differences between the land cover maps produced by the Ministry of Environment and the satellite imagery processed by the National Statistical Office.

The Minimum Squared Distance Estimator and the Minimum Density Power Divergence Estimator

  • Pak, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.6
    • /
    • pp.989-995
    • /
    • 2009
  • Basu et al. (1998) proposed the minimum divergence estimating method which is free from using the painful kernel density estimator. Their proposed class of density power divergences is indexed by a single parameter $\alpha$ which controls the trade-off between robustness and efficiency. In this article, (1) we introduce a new large class the minimum squared distance which includes from the minimum Hellinger distance to the minimum $L_2$ distance. We also show that under certain conditions both the minimum density power divergence estimator(MDPDE) and the minimum squared distance estimator(MSDE) are asymptotically equivalent and (2) in finite samples the MDPDE performs better than the MSDE in general but there are some cases where the MSDE performs better than the MDPDE when estimating a location parameter or a proportion of mixed distributions.

Prediction of Sound Radiation Power from Coupled Structures Uusing SEA (SEA법에 의한 결합구조물의 음향방사파워 예측)

  • 오재응;이명렬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.20-28
    • /
    • 1989
  • SEA(Statistical Energy Analysis) method has been applied to predict the sound radiation power from vibrating machinery. In this study, sound radiation power was predicted from coupled structures by transmission of vibration, which composed of two plates welded into an L shape. The predicted sound radiation power is in agreement within 2 or 3 dB on octave band comparing with values obtained from direct measurements. Also, in order to prove the validity of this method in changes of sound radiation power associated with modifications to structures, rubber pad was stuck on a plate. The results agree approximately within 3 or 5 dB. And SEA method is valuable for the optimal design to reduce the noise. Additionally, this paper suggests that the logarithmic decrement method is valid as the one for finding the loss factor.

Projection Pursuit K-Means Visual Clustering

  • Kim, Mi-Kyung;Huh, Myung-Hoe
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.4
    • /
    • pp.519-532
    • /
    • 2002
  • K-means clustering is a well-known partitioning method of multivariate observations. Recently, the method is implemented broadly in data mining softwares due to its computational efficiency in handling large data sets. However, it does not yield a suitable visual display of multivariate observations that is important especially in exploratory stage of data analysis. The aim of this study is to develop a K-means clustering method that enables visual display of multivariate observations in a low-dimensional space, for which the projection pursuit method is adopted. We propose a computationally inexpensive and reliable algorithm and provide two numerical examples.

A Sequential Approach for Estimating the Variance of a Normal Population Using Some Available Prior Information

  • Samawi, Hani M.;Al-Saleh, Mohammad F.
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.4
    • /
    • pp.433-445
    • /
    • 2002
  • Using some available information about the unknown variance $\sigma$$^2$ of a normal distribution with mean $\mu$, a sequential approach is used to estimate $\sigma$$^2$. Two cases have been considered regarding the mean $\mu$ being known or unknown. The mean square error (MSE) of the new estimators are compared to that of the usual estimator of $\sigma$$^2$, namely, the sample variance based on a sample of size equal to the expected sample size. Simulation results indicates that, the new estimator is more efficient than the usual estimator of $\sigma$$^2$whenever the actual value of $\sigma$$^2$ is not too far from the prior information.

Two-phase Adaptive Cluster Sampling with Unequal Probabilities Selection

  • Lee, Keejae
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.3
    • /
    • pp.265-278
    • /
    • 1998
  • In this paper, we suggest two-phase adaptive cluster sampling schemes. The main feature of the two-phase sampling is that the information collected in the first phase sample is utilized in the selection of the second phase sample. The conventional two-phase sampling is, however, not sufficient to increase efficiency when the population of interest is rare and clustered. In the proposed sampling scheme, the first phase sample is selected with adaptive cluster sampling procedure and the second phase sample is selected by PPSWR and $\pi$PS sampling. We investigate unbiased estimators of population total and their variance for the proposed sampling schemes respectively. Finally we compare these suggested sampling schemes using numerical examples .

  • PDF

Estimation of Geometric Mean for k Exponential Parameters Using a Probability Matching Prior

  • Kim, Hea-Jung;Kim, Dae Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • In this article, we consider a Bayesian estimation method for the geometric mean of $textsc{k}$ exponential parameters, Using the Tibshirani's orthogonal parameterization, we suggest an invariant prior distribution of the $textsc{k}$ parameters. It is seen that the prior, probability matching prior, is better than the uniform prior in the sense of correct frequentist coverage probability of the posterior quantile. Then a weighted Monte Carlo method is developed to approximate the posterior distribution of the mean. The method is easily implemented and provides posterior mean and HPD(Highest Posterior Density) interval for the geometric mean. A simulation study is given to illustrates the efficiency of the method.

An Estimator of Population Mean Based on Balanced Systematic Sampling When Both the Sample Size and the Reciprocal of the Sampling Fraction are Odd Numbers

  • Kim, Hyuk-Joo
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.3
    • /
    • pp.667-677
    • /
    • 2007
  • In this paper, we propose a method for estimating the mean of a population which has a linear trend, when both n, the sample size, and k, the reciprocal of the sampling fraction, are odd numbers. The proposed method, not having the drawbacks of centered systematic sampling, centered modified sampling and centered balanced sampling, consists of selecting a sample by balanced systematic sampling and estimating the population mean by using interpolation. We compare the efficiency of the proposed method and existing methods under the criterion of the expected mean square error based on the infinite superpopulation model.

Tests of equality of several variances with the likelihood ratio principle

  • Park, Hyo-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.329-339
    • /
    • 2018
  • In this study, we propose tests for equality of several variances with the normality assumption. First of all, we propose the likelihood ratio test by applying the permutation principle. Then by using the p-values for the pairwise tests between variances and combination functions, we propose combination tests. We apply the permutation principle to obtain the overall p-values. Also we review the well- known test statistics for the completion of our discussion and modify a statistic with the p-values. Then we illustrate proposed tests by numerical and simulated data and compare their efficiency with the reviewed ones through a simulation study by obtaining empirical p-values. Finally, we discuss some interesting features related to the resampling methods and tests for equality among several variances.

Potential of regression models in projecting sea level variability due to climate change at Haldia Port, India

  • Roshni, Thendiyath;K., Md. Sajid;Samui, Pijush
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.319-328
    • /
    • 2017
  • Higher prediction efficacy is a very challenging task in any field of engineering. Due to global warming, there is a considerable increase in the global sea level. Through this work, an attempt has been made to find the sea level variability due to climate change impact at Haldia Port, India. Different statistical downscaling techniques are available and through this paper authors are intending to compare and illustrate the performances of three regression models. The models: Wavelet Neural Network (WNN), Minimax Probability Machine Regression (MPMR), Feed-Forward Neural Network (FFNN) are used for projecting the sea level variability due to climate change at Haldia Port, India. Model performance indices like PI, RMSE, NSE, MAPE, RSR etc were evaluated to get a clear picture on the model accuracy. All the indices are pointing towards the outperformance of WNN in projecting the sea level variability. The findings suggest a strong recommendation for ensembled models especially wavelet decomposed neural network to improve projecting efficiency in any time series modeling.