• Title/Summary/Keyword: Statistical Modeling

Search Result 1,212, Processing Time 0.031 seconds

The Intelligent Determination Model of Audience Emotion for Implementing Personalized Exhibition (개인화 전시 서비스 구현을 위한 지능형 관객 감정 판단 모형)

  • Jung, Min-Kyu;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.39-57
    • /
    • 2012
  • Recently, due to the introduction of high-tech equipment in interactive exhibits, many people's attention has been concentrated on Interactive exhibits that can double the exhibition effect through the interaction with the audience. In addition, it is also possible to measure a variety of audience reaction in the interactive exhibition. Among various audience reactions, this research uses the change of the facial features that can be collected in an interactive exhibition space. This research develops an artificial neural network-based prediction model to predict the response of the audience by measuring the change of the facial features when the audience is given stimulation from the non-excited state. To present the emotion state of the audience, this research uses a Valence-Arousal model. So, this research suggests an overall framework composed of the following six steps. The first step is a step of collecting data for modeling. The data was collected from people participated in the 2012 Seoul DMC Culture Open, and the collected data was used for the experiments. The second step extracts 64 facial features from the collected data and compensates the facial feature values. The third step generates independent and dependent variables of an artificial neural network model. The fourth step extracts the independent variable that affects the dependent variable using the statistical technique. The fifth step builds an artificial neural network model and performs a learning process using train set and test set. Finally the last sixth step is to validate the prediction performance of artificial neural network model using the validation data set. The proposed model is compared with statistical predictive model to see whether it had better performance or not. As a result, although the data set in this experiment had much noise, the proposed model showed better results when the model was compared with multiple regression analysis model. If the prediction model of audience reaction was used in the real exhibition, it will be able to provide countermeasures and services appropriate to the audience's reaction viewing the exhibits. Specifically, if the arousal of audience about Exhibits is low, Action to increase arousal of the audience will be taken. For instance, we recommend the audience another preferred contents or using a light or sound to focus on these exhibits. In other words, when planning future exhibitions, planning the exhibition to satisfy various audience preferences would be possible. And it is expected to foster a personalized environment to concentrate on the exhibits. But, the proposed model in this research still shows the low prediction accuracy. The cause is in some parts as follows : First, the data covers diverse visitors of real exhibitions, so it was difficult to control the optimized experimental environment. So, the collected data has much noise, and it would results a lower accuracy. In further research, the data collection will be conducted in a more optimized experimental environment. The further research to increase the accuracy of the predictions of the model will be conducted. Second, using changes of facial expression only is thought to be not enough to extract audience emotions. If facial expression is combined with other responses, such as the sound, audience behavior, it would result a better result.

A Meta Analysis of Using Structural Equation Model on the Korean MIS Research (국내 MIS 연구에서 구조방정식모형 활용에 관한 메타분석)

  • Kim, Jong-Ki;Jeon, Jin-Hwan
    • Asia pacific journal of information systems
    • /
    • v.19 no.4
    • /
    • pp.47-75
    • /
    • 2009
  • Recently, researches on Management Information Systems (MIS) have laid out theoretical foundation and academic paradigms by introducing diverse theories, themes, and methodologies. Especially, academic paradigms of MIS encourage a user-friendly approach by developing the technologies from the users' perspectives, which reflects the existence of strong causal relationships between information systems and user's behavior. As in other areas in social science the use of structural equation modeling (SEM) has rapidly increased in recent years especially in the MIS area. The SEM technique is important because it provides powerful ways to address key IS research problems. It also has a unique ability to simultaneously examine a series of casual relationships while analyzing multiple independent and dependent variables all at the same time. In spite of providing many benefits to the MIS researchers, there are some potential pitfalls with the analytical technique. The research objective of this study is to provide some guidelines for an appropriate use of SEM based on the assessment of current practice of using SEM in the MIS research. This study focuses on several statistical issues related to the use of SEM in the MIS research. Selected articles are assessed in three parts through the meta analysis. The first part is related to the initial specification of theoretical model of interest. The second is about data screening prior to model estimation and testing. And the last part concerns estimation and testing of theoretical models based on empirical data. This study reviewed the use of SEM in 164 empirical research articles published in four major MIS journals in Korea (APJIS, ISR, JIS and JITAM) from 1991 to 2007. APJIS, ISR, JIS and JITAM accounted for 73, 17, 58, and 16 of the total number of applications, respectively. The number of published applications has been increased over time. LISREL was the most frequently used SEM software among MIS researchers (97 studies (59.15%)), followed by AMOS (45 studies (27.44%)). In the first part, regarding issues related to the initial specification of theoretical model of interest, all of the studies have used cross-sectional data. The studies that use cross-sectional data may be able to better explain their structural model as a set of relationships. Most of SEM studies, meanwhile, have employed. confirmatory-type analysis (146 articles (89%)). For the model specification issue about model formulation, 159 (96.9%) of the studies were the full structural equation model. For only 5 researches, SEM was used for the measurement model with a set of observed variables. The average sample size for all models was 365.41, with some models retaining a sample as small as 50 and as large as 500. The second part of the issue is related to data screening prior to model estimation and testing. Data screening is important for researchers particularly in defining how they deal with missing values. Overall, discussion of data screening was reported in 118 (71.95%) of the studies while there was no study discussing evidence of multivariate normality for the models. On the third part, issues related to the estimation and testing of theoretical models on empirical data, assessing model fit is one of most important issues because it provides adequate statistical power for research models. There were multiple fit indices used in the SEM applications. The test was reported in the most of studies (146 (89%)), whereas normed-test was reported less frequently (65 studies (39.64%)). It is important that normed- of 3 or lower is required for adequate model fit. The most popular model fit indices were GFI (109 (66.46%)), AGFI (84 (51.22%)), NFI (44 (47.56%)), RMR (42 (25.61%)), CFI (59 (35.98%)), RMSEA (62 (37.80)), and NNFI (48 (29.27%)). Regarding the test of construct validity, convergent validity has been examined in 109 studies (66.46%) and discriminant validity in 98 (59.76%). 81 studies (49.39%) have reported the average variance extracted (AVE). However, there was little discussion of direct (47 (28.66%)), indirect, and total effect in the SEM models. Based on these findings, we suggest general guidelines for the use of SEM and propose some recommendations on concerning issues of latent variables models, raw data, sample size, data screening, reporting parameter estimated, model fit statistics, multivariate normality, confirmatory factor analysis, reliabilities and the decomposition of effects.

A Study on Influence of Foodservice Managers' Emotional Intelligence on Job Attitude and Organizational Performance (급식관리자의 개인적 감성지능이 직무태도 및 조직성과에 미치는 영향)

  • Jung, Hyun-Young;Kim, Hyun-Ah
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1880-1892
    • /
    • 2010
  • The purposes of this study were to: a) provide evidence concerning the effects of emotional intelligence on job outcomes, b) examine the impacts of emotional intelligence on employee-related variables such as 'job satisfaction', 'organizational commitment', 'organizational performance', and 'turnover intention' c) identify the conceptual framework underlying emotional intelligence. A survey was conducted to collect data from foodservice managers (N=231). Statistical analyses were completed using SPSS Win (16.0) for descriptive analysis, reliability analysis, factor analysis, t-test, correlation analysis, cluster analysis and AMOS (16.0) for confirmatory factor analysis and structural equation modeling. The concept of emotional intelligence (EI) has been on the radar screens of many leaders and managers over the last several decades. The emotional intelligence is generally accepted to be a combination of emotional and interpersonal competencies that influence behavior, thinking and interaction with others. The main results of this study were as follows. The four EI (Emotional Intelligence) dimensions correlated significantly with age. The means of job satisfaction score were above the midpoint (3.04 point) scale. The organizational commitment score was above the midpoint (3.41 point) scale and was higher at 'loyalty' factor than 'commitment' factor. The means of organizational performance score were above the midpoint (3.34) scale. The correlations among the four EI (emotional intelligence) factors were significant with job satisfaction; organizational commitment, organizational performance and turnover intention. The test of hypothesis using structural equation modeling found that emotional intelligence produced positive effects on job attitude and job performance. Emotional intelligence enhanced organizational commitment, and in turn, managers' attitude produced positive effects on organizational performance; emotional intelligence also had a direct impact on organizational performance. This study has identified the effect of emotional intelligence on organizational performance and attitudes toward one's job.

How Enduring Product Involvement and Perceived Risk Affect Consumers' Online Merchant Selection Process: The 'Required Trust Level' Perspective (지속적 관여도 및 인지된 위험이 소비자의 온라인 상인선택 프로세스에 미치는 영향에 관한 연구: 요구신뢰 수준 개념을 중심으로)

  • Hong, Il-Yoo B.;Lee, Jung-Min;Cho, Hwi-Hyung
    • Asia pacific journal of information systems
    • /
    • v.22 no.1
    • /
    • pp.29-52
    • /
    • 2012
  • Consumers differ in the way they make a purchase. An audio mania would willingly make a bold, yet serious, decision to buy a top-of-the-line home theater system, while he is not interested in replacing his two-decade-old shabby car. On the contrary, an automobile enthusiast wouldn't mind spending forty thousand dollars to buy a new Jaguar convertible, yet cares little about his junky component system. It is product involvement that helps us explain such differences among individuals in the purchase style. Product involvement refers to the extent to which a product is perceived to be important to a consumer (Zaichkowsky, 2001). Product involvement is an important factor that strongly influences consumer's purchase decision-making process, and thus has been of prime interest to consumer behavior researchers. Furthermore, researchers found that involvement is closely related to perceived risk (Dholakia, 2001). While abundant research exists addressing how product involvement relates to overall perceived risk, little attention has been paid to the relationship between involvement and different types of perceived risk in an electronic commerce setting. Given that perceived risk can be a substantial barrier to the online purchase (Jarvenpaa, 2000), research addressing such an issue will offer useful implications on what specific types of perceived risk an online firm should focus on mitigating if it is to increase sales to a fullest potential. Meanwhile, past research has focused on such consumer responses as information search and dissemination as a consequence of involvement, neglecting other behavioral responses like online merchant selection. For one example, will a consumer seriously considering the purchase of a pricey Guzzi bag perceive a great degree of risk associated with online buying and therefore choose to buy it from a digital storefront rather than from an online marketplace to mitigate risk? Will a consumer require greater trust on the part of the online merchant when the perceived risk of online buying is rather high? We intend to find answers to these research questions through an empirical study. This paper explores the impact of enduring product involvement and perceived risks on required trust level, and further on online merchant choice. For the purpose of the research, five types or components of perceived risk are taken into consideration, including financial, performance, delivery, psychological, and social risks. A research model has been built around the constructs under consideration, and 12 hypotheses have been developed based on the research model to examine the relationships between enduring involvement and five components of perceived risk, between five components of perceived risk and required trust level, between enduring involvement and required trust level, and finally between required trust level and preference toward an e-tailer. To attain our research objectives, we conducted an empirical analysis consisting of two phases of data collection: a pilot test and main survey. The pilot test was conducted using 25 college students to ensure that the questionnaire items are clear and straightforward. Then the main survey was conducted using 295 college students at a major university for nine days between December 13, 2010 and December 21, 2010. The measures employed to test the model included eight constructs: (1) enduring involvement, (2) financial risk, (3) performance risk, (4) delivery risk, (5) psychological risk, (6) social risk, (7) required trust level, (8) preference toward an e-tailer. The statistical package, SPSS 17.0, was used to test the internal consistency among the items within the individual measures. Based on the Cronbach's ${\alpha}$ coefficients of the individual measure, the reliability of all the variables is supported. Meanwhile, the Amos 18.0 package was employed to perform a confirmatory factor analysis designed to assess the unidimensionality of the measures. The goodness of fit for the measurement model was satisfied. Unidimensionality was tested using convergent, discriminant, and nomological validity. The statistical evidences proved that the three types of validity were all satisfied. Now the structured equation modeling technique was used to analyze the individual paths along the relationships among the research constructs. The results indicated that enduring involvement has significant positive relationships with all the five components of perceived risk, while only performance risk is significantly related to trust level required by consumers for purchase. It can be inferred from the findings that product performance problems are mostly likely to occur when a merchant behaves in an opportunistic manner. Positive relationships were also found between involvement and required trust level and between required trust level and online merchant choice. Enduring involvement is concerned with the pleasure a consumer derives from a product class and/or with the desire for knowledge for the product class, and thus is likely to motivate the consumer to look for ways of mitigating perceived risk by requiring a higher level of trust on the part of the online merchant. Likewise, a consumer requiring a high level of trust on the merchant will choose a digital storefront rather than an e-marketplace, since a digital storefront is believed to be trustworthier than an e-marketplace, as it fulfills orders by itself rather than acting as an intermediary. The findings of the present research provide both academic and practical implications. The first academic implication is that enduring product involvement is a strong motivator of consumer responses, especially the selection of a merchant, in the context of electronic shopping. Secondly, academicians are advised to pay attention to the finding that an individual component or type of perceived risk can be used as an important research construct, since it would allow one to pinpoint the specific types of risk that are influenced by antecedents or that influence consequents. Meanwhile, our research provides implications useful for online merchants (both online storefronts and e-marketplaces). Merchants may develop strategies to attract consumers by managing perceived performance risk involved in purchase decisions, since it was found to have significant positive relationship with the level of trust required by a consumer on the part of the merchant. One way to manage performance risk would be to thoroughly examine the product before shipping to ensure that it has no deficiencies or flaws. Secondly, digital storefronts are advised to focus on symbolic goods (e.g., cars, cell phones, fashion outfits, and handbags) in which consumers are relatively more involved than others, whereas e- marketplaces should put their emphasis on non-symbolic goods (e.g., drinks, books, MP3 players, and bike accessories).

  • PDF

Spatial Distribution of Aging District in Taejeon Metropolitan City (대전광역시 노령화 지구의 공간적 분포 패턴)

  • Jeong, Hwan-Yeong;Ko, Sang-Im
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.2
    • /
    • pp.1-19
    • /
    • 2000
  • This study is to investigate and analyze regional patterns of aging in Taejeon Metropolitan city-the overpopulated area of Choong-Cheong Province-by cohort analysis method. According to the population structure transition caused by rapid social and economic changes, Korea has made a rapid progress in population aging since 1970. This trend is so rapid that we should prepare for and cope with aging society. It is not only slow to cope with it in our society, but also there are few studies on population aging of the geographical field in Korea. The data of this study are the reports of Population and Housing Censuses in 1975 and 1985 and General Population and Housing Censuses with 10% sample survey in 1995 taken by National Statistical Office. The research method is to sample as the aging district the area with high aged population rate where the populations over 60 reside among total population during the years of 1975, 1985, 1995 and to sample the special districts of decreasing population where the population decreases very much and the special districts of increasing population in which the population increases greatly, presuming that the reason why aged population rate increases is that non-elderly population high in mobility moves out. It is then verified and ascertained whether it is true or not with cohort analysis method by age. Finally regional patterns in the city are found through the classification and modeling by type based on the aging district, the special districts of decreasing population, and the special districts of increasing population. The characteristics of the regional patterns show that there is social population transition and that non-elderly population moves out. The aging district with the high aged population rate is divided into high-level keeping-up type, relative falling type below the average of Taejeon city in aging progress, and relative rising type above the average of the city. This district can be found at both the central area of the city and the suburbs because Taejeon city has the characteristic of over-bounded city. But it cannot be found at the new built-up area with the in-migration of large population. The special districts of decreasing population where the population continues to decrease can be said to be the population doughnuts found at the CBD and its neighboring inner area. On the other hand, the special districts of increasing population where the population continues to increase are located at the new built-up area of the northern part in Taejeon city. The special districts of decreasing population are overlapping with the aging district and higher in aged population rate by the out-migration of non-elderly population. The special districts of increasing population are not overlapping with the aging district and lower in aged population rate by the in-migration of non-elderly population. To clarify the distribution map of the aging district, the special districts of decreasing and increasing population and the aging district are divided into four groups such as the special districts of decreasing population group-the same one as the aging district, the special districts of decreasing population group, the special districts of increasing population group, and the other district. With the cohort analysis method by age used to investigate the definite increase and decrease of aging population through population transition of each group, it is found that the progress of population aging is closely related to the social population fluctuation, especially that aged population rate is higher with the out-migration of non-elderly population. This is to explain each model of CBD, inner area, and the suburbs after modeling the aging district, the special districts of decreasing population, and the special districts of increasing population in Taejeon city. On the assumption that the city area is a concentric circle, it is possible to divide it into three areas such as CBD(A), the inner area(B), and the suburbs(C). The special districts of increasing and decreasing population in the city are divided into three districts-the special districts of decreasing population(a), the special districts of increasing population(b), and the others(c). The aging district of this city is divided into the aging district($\alpha$) and the others($\beta$). And then modeling these districts, it is probable to find regional patterns in the city. $Aa{\alpha}$ and $Ac{\beta}$ patterns are found in the CBD, in which $Aa{\alpha}$ is the special district of decreasing population and is higher in aged population rate because of aged population low in mobility staying behind and out-migration of non-elderly population. $Ba{\alpha}$, $Ba{\beta}$, $Bb{\beta}$, and $Bc{\beta}$ patterns are found in the inner area, in which neighboring area $Ba{\alpha}$ pattern is located. $Bb{\beta}$ pattern is located at the new developing area of newly built apartment complex. $Cb{\beta}$, $Cc{\alpha}$, and $Cc{\beta}$ patterns are found in the suburbs, among which $Cc{\alpha}$ pattern is highest in population aging. It is likely that the $Cc{\beta}$ under housing land readjustment on a large scale will be the $Cb{\beta}$ pattern. As analyzed above, marriage and out-migration of new family, non-elderly population, with house purchase are main factors in accelerating population aging in the central area of the city. Population aging is responsible for the great increase of aged population with longer life expectancy by the low death rate, the out-migration of non-elderly population, and the age group of new aged population in the suburbs. It is necessary to investigate and analyze the regional patterns of population aging at the time when population problems caused by aging as well as longer life expectancy are now on the increase. I hope that this will help the future study on population aging of the geographical field in Korea. As in the future population aging will be a major problem in our society, local autonomy should make a plan for the problem to the extent that population aging progresses by regional groups and inevitably prepare for it.

  • PDF

Discriminatory Attitudes towards IV/AIDS (PWHAs) Patents by Middle and High School Students (HIV/AIDS 감염인에 대한 차별의식에 미치는 영향의 중고등학생 간 비교: 에이즈 낙인의 매개효과)

  • Chun, Sung-Soo;Kim, Ju-Ri;Shin, Seung-Bae;Sohn, Ae-Ree
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.9 no.1
    • /
    • pp.63-83
    • /
    • 2008
  • Objectives: This study was to examine HIV/AIDS knowledge of transmission, attitudes toward homosexuals on stigma of HIV/AIDS and discriminatory attitudes towards person with HIV/AIDS (PWHAs) by middle and high school students in Seoul, Korea. Methods: The population of this study is middle and high school students in Seoul, Korea. Eight junior high schools and eight senior high schools were selected randomly. Three thousand and one hundred thirty-one students (1704 males and 1397 males) from 16 schools participated in the survey, and 2.977 cases were analyzed. A self-administered questionnaire measuring socio-demographic variables, HIV/AIDS knowledge of transmission, sigma of HIV/AIDS (3 items, 5-point Likert-type scale) and discriminatory attitudes PWHAs (5 items, 5-point Likert-type scale) was utilized. The Structural Equation Modeling was employed to investigate the research Model. Results: The empirical study shows that a number of statistical hypotheses are significant. The stigma and discriminatory attitudes PWHAs were significantly different by middle and high school students. The attitudes toward homosexuals and HIV/AIDS knowledge of transmission were important factors on stigma and discriminatory attitudes PWHAs. Socio-demographical variables such as sex was related to the stigma and discriminatory attitudes PWHAs. Conclusion: Therefore, it is important to design HIV prevention strategies that increase in positive attitudes towards PWHAs.

  • PDF

A Study on the Buyer's Decision Making Models for Introducing Intelligent Online Handmade Services (지능형 온라인 핸드메이드 서비스 도입을 위한 구매자 의사결정모형에 관한 연구)

  • Park, Jong-Won;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.119-138
    • /
    • 2016
  • Since the Industrial Revolution, which made the mass production and mass distribution of standardized goods possible, machine-made (manufactured) products have accounted for the majority of the market. However, in recent years, the phenomenon of purchasing even more expensive handmade products has become a noticeable trend as consumers have started to acknowledge the value of handmade products, such as the craftsman's commitment, belief in their quality and scarcity, and the sense of self-esteem from having them,. Consumer interest in these handmade products has shown explosive growth and has been coupled with the recent development of three-dimensional (3D) printing technologies. Etsy.com is the world's largest online handmade platform. It is no different from any other online platform; it provides an online market where buyers and sellers virtually meet to share information and transact business. However, Etsy.com is different in that shops within this platform only deal with handmade products in a variety of categories, ranging from jewelry to toys. Since its establishment in 2005, despite being limited to handmade products, Etsy.com has enjoyed rapid growth in membership, transaction volume, and revenue. Most recently in April 2015, it raised funds through an initial public offering (IPO) of more than 1.8 billion USD, which demonstrates the huge potential of online handmade platforms. After the success of Etsy.com, various types of online handmade platforms such as Handmade at Amazon, ArtFire, DaWanda, and Craft is ART have emerged and are now competing with each other, at the same time, which has increased the size of the market. According to Deloitte's 2015 holiday survey on which types of gifts the respondents plan to buy during the holiday season, about 16% of U.S. consumers chose "homemade or craft items (e.g., Etsy purchase)," which was the same rate as those for the computer game and shoes categories. This indicates that consumer interests in online handmade platforms will continue to rise in the future. However, this high interest in the market for handmade products and their platforms has not yet led to academic research. Most extant studies have only focused on machine-made products and intelligent services for them. This indicates a lack of studies on handmade products and their intelligent services on virtual platforms. Therefore, this study used signaling theory and prior research on the effects of sellers' characteristics on their performance (e.g., total sales and price premiums) in the buyer-seller relationship to identify the key influencing e-Image factors (e.g., reputation, size, information sharing, and length of relationship). Then, their impacts on the performance of shops within the online handmade platform were empirically examined; the dataset was collected from Etsy.com through the application of web harvesting technology. The results from the structural equation modeling revealed that the reputation, size, and information sharing have significant effects on the total sales, while the reputation and length of relationship influence price premiums. This study extended the online platform research into online handmade platform research by identifying key influencing e-Image factors on within-platform shop's total sales and price premiums based on signaling theory and then performed a statistical investigation. These findings are expected to be a stepping stone for future studies on intelligent online handmade services as well as handmade products themselves. Furthermore, the findings of the study provide online handmade platform operators with practical guidelines on how to implement intelligent online handmade services. They should also help shop managers build their marketing strategies in a more specific and effective manner by suggesting key influencing e-Image factors. The results of this study should contribute to the vitalization of intelligent online handmade services by providing clues on how to maximize within-platform shops' total sales and price premiums.

Using Spatial Data and Crop Growth Modeling to Predict Performance of South Korean Rice Varieties Grown in Western Coastal Plains in North Korea (공간정보와 생육모의에 의한 남한 벼 품종의 북한 서부지대 적응성 예측)

  • 김영호;김희동;한상욱;최재연;구자민;정유란;김재영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.224-236
    • /
    • 2002
  • A long-term growth simulation was performed at 496 land units in the western coastal plains (WCP) of North Korea to test the potential adaptability of each land unit for growing South Korean rice cultivars. The land units for rice cultivation (CZU), each of them represented by a geographically referenced 5 by 5 km grid tell, were identified by analyzing satellite remote sensing data. Surfaces of monthly climatic normals for daily maximum and minimum temperature, precipitation number of rain days and solar radiation were generated at a 1 by 1 km interval by spatial statistical methods using observed data at 51 synoptic weather stations in North and South Korea during 1981-2000. Grid cells felling within a same CZU and, at the same time, corresponding to the satellite data- identified rice growing pixels were extracted and aggregated to make a spatially explicit climatic normals relevant to the rice growing area of the CZU. Daily weather dataset for 30 years was randomly generated from the monthly climatic normals of each CZU. Growth and development parameters of CERES-rice model suitable for 11 major South Korean cultivars were derived from long-term field observations. Eight treatments comprised of 2 transplanting dates $\times$ 2 cropping systems $\times$ 2 irrigation methods were assigned to each cultivar. Each treatment was simulated with the randomly generated 30 years' daily weather data (from planting to physiological maturity) for 496 land units in WCP to simulate the growth and yield responses to the interannual climate variation. The same model was run with the input data from the 3 major crop experiment stations in South Korea to obtain a 30 year normal performance of each cultivar, which was used as a "reference" for comparison. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to evaluate the suitability of each land unit for growing a specific South Korean cultivar. The results may be utilized as decision aids for agrotechnology transfer to North Korea, for example, germplasm evaluation, resource allocation and crop calendar preparation.

Developing and Applying the Questionnaire to Measure Science Core Competencies Based on the 2015 Revised National Science Curriculum (2015 개정 과학과 교육과정에 기초한 과학과 핵심역량 조사 문항의 개발 및 적용)

  • Ha, Minsu;Park, HyunJu;Kim, Yong-Jin;Kang, Nam-Hwa;Oh, Phil Seok;Kim, Mi-Jum;Min, Jae-Sik;Lee, Yoonhyeong;Han, Hyo-Jeong;Kim, Moogyeong;Ko, Sung-Woo;Son, Mi-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.495-504
    • /
    • 2018
  • This study was conducted to develop items to measure scientific core competency based on statements of scientific core competencies presented in the 2015 revised national science curriculum and to identify the validity and reliability of the newly developed items. Based on the explanations of scientific reasoning, scientific inquiry ability, scientific problem-solving ability, scientific communication ability, participation/lifelong learning in science presented in the 2015 revised national science curriculum, 25 items were developed by five science education experts. To explore the validity and reliability of the developed items, data were collected from 11,348 students in elementary, middle, and high schools nationwide. The content validity, substantive validity, the internal structure validity, and generalization validity proposed by Messick (1995) were examined by various statistical tests. The results of the MNSQ analysis showed that there were no nonconformity in the 25 items. The confirmatory factor analysis using the structural equation modeling revealed that the five-factor model was a suitable model. The differential item functioning analyses by gender and school level revealed that the nonconformity DIF value was found in only two out of 175 cases. The results of the multivariate analysis of variance by gender and school level showed significant differences of test scores between schools and genders, and the interaction effect was also significant. The assessment items of science core competency based on the 2015 revised national science curriculum are valid from a psychometric point of view and can be used in the science education field.

Usefulness of Data Mining in Criminal Investigation (데이터 마이닝의 범죄수사 적용 가능성)

  • Kim, Joon-Woo;Sohn, Joong-Kweon;Lee, Sang-Han
    • Journal of forensic and investigative science
    • /
    • v.1 no.2
    • /
    • pp.5-19
    • /
    • 2006
  • Data mining is an information extraction activity to discover hidden facts contained in databases. Using a combination of machine learning, statistical analysis, modeling techniques and database technology, data mining finds patterns and subtle relationships in data and infers rules that allow the prediction of future results. Typical applications include market segmentation, customer profiling, fraud detection, evaluation of retail promotions, and credit risk analysis. Law enforcement agencies deal with mass data to investigate the crime and its amount is increasing due to the development of processing the data by using computer. Now new challenge to discover knowledge in that data is confronted to us. It can be applied in criminal investigation to find offenders by analysis of complex and relational data structures and free texts using their criminal records or statement texts. This study was aimed to evaluate possibile application of data mining and its limitation in practical criminal investigation. Clustering of the criminal cases will be possible in habitual crimes such as fraud and burglary when using data mining to identify the crime pattern. Neural network modelling, one of tools in data mining, can be applied to differentiating suspect's photograph or handwriting with that of convict or criminal profiling. A case study of in practical insurance fraud showed that data mining was useful in organized crimes such as gang, terrorism and money laundering. But the products of data mining in criminal investigation should be cautious for evaluating because data mining just offer a clue instead of conclusion. The legal regulation is needed to control the abuse of law enforcement agencies and to protect personal privacy or human rights.

  • PDF