• Title/Summary/Keyword: Stationary inverse-geometry X-ray

Search Result 2, Processing Time 0.016 seconds

Development of a truncation artifact reduction method in stationary inverse-geometry X-ray laminography for non-destructive testing

  • Kim, Burnyoung;Yim, Dobin;Lee, Seungwan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1626-1633
    • /
    • 2021
  • In an industrial field, non-destructive testing (NDT) is commonly used to inspect industrial products. Among NDT methods using radiation sources, X-ray laminography has several advantages, such as high depth resolution and low computational costs. Moreover, an X-ray laminography system with stationary source array and compact detector is able to reduce mechanical motion artifacts and improve inspection efficiency. However, this system, called stationary inverse-geometry X-ray laminography (s-IGXL), causes truncation artifacts in reconstructed images due to limited fields-of-view (FOVs). In this study, we proposed a projection data correction (PDC) method to reduce the truncation artifacts arisen in s-IGXL images, and the performance of the proposed method was evaluated with the different number of focal spots in terms of quantitative accuracy. Comparing with conventional techniques, the PDC method showed superior performance in reducing truncation artifacts and improved the quantitative accuracy of s-IGXL images for all the number of focal spots. In conclusion, the PDC method can improve the accuracy of s-IGXL images and allow precise NDT measurements.

Image Quality Evaluation according to X-ray Source Arrangement Type and the Number of Projections in a s-IGDT System (s-IGDT 시스템의 X-선원 배열 형태 및 투영상 개수에 따른 영상 화질 평가에 관한 연구)

  • Lee, Dahye;Nam, KiBok;Lee, Seungwan
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.117-125
    • /
    • 2022
  • Although stationary inverse-geometry digital tomosynthesis (s-IGDT) is able to reduce motion artifacts, image acquisition time and radiation dose, the image quality of the s-IGDT is degraded due to the truncations arisen in projections. Therefore, the effects of geometric and image acquisition conditions in the s-IGDT should be analyzed for improving the image quality and clinical applicability of the s-IGDT system. In this study, the s-IGDT images were obtained with the various X-ray source arrangement types and the various number of projections. The resolution and noise characteristics of the obtained s-IGDT images were evaluated, and the characteristics were compared with those of the conventional DT images. The s-IGDT system using linear X-ray source arrangement and 40 projections maximized the image characteristics of resolution and noise, and the corresponding system was superior to the conventional DT system in terms of image resolution. In conclusion, we expect that the s-IGDT system can be used for providing medical images in diagnosis.