• Title/Summary/Keyword: Stationary distribution

Search Result 339, Processing Time 0.031 seconds

Frequency Characteristics of Acoustic Emission Signal from Fatigue Crack Propagation in 5083 Aluminum by Joint Time-Frequency Analysis Method (시간-주파수 해석법에 의한 5083 알루미늄의 피로균열 진전에 의할 음향방출 신호의 주파수특성)

  • NAM KI-WOO;LEE KUN-CHAN
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.3 s.52
    • /
    • pp.46-51
    • /
    • 2003
  • Acoustic emission (AE) signals, emanated during local failure of aluminum alloys, have been the subject of numerous investigations. It is well known that the characteristics of AE are strongly influenced by the previous thermal and mechanical treatment of the sample. Possible sources of AE during deformation have been suggested as the avalanche motion of dislocations, fracture of brittle particles, and debonding of these particles from the alloy matrix. The goal of the present study is to determine if AE occurring as the result of fatigue crack propagation could be evaluated by the joint time-frequency analysis method, short time Fourier transform (STFT), and Wigner-Ville distribution (WVD). The time-frequency analysis methods can be used to analyze non-stationary AE more effectively than conventional techniques. STFT is more effective than WVD in analyzing AE signals. Noise and frequency characteristics of crack openings and closures could be separated using STFT. The influence of various fatigue parameters on the frequency characteristics of AE signals was investigated.

Comparisons of Error Characteristics between TOA and TDOA Positioning in Dense Multipath Environment (다중경로 환경에서의 TOA방식과 TDOA방식의 측위성능 비교)

  • Park, Ji-Won;Park, Ji-Hee;Song, Seung-Hun;Sung, Tae-Kyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.415-421
    • /
    • 2009
  • TOA(time-of-arrival) and TDOA(time-difference-of-arrival) positioning techniques are commonly used in many radio-navigation systems. From the literature, it is known that the position estimate and error covariance matrix of TDOA obtained by GN(Gauss-Newton) method is exactly the same as that of TOA when the error source of the range measurement is only an IID white Gaussian noise. In case of geo-location and indoor positioning, however, multi-path or NLOS(non-line-of-sight) error is frequently appeared in range measurements. Though its occurrence is random, the multipath acts like a bias for a stationary user if it occurs. This paper presents the comparisons of error characteristics between TOA and TDOA positioning in presence of multi-path or NLOS error. It is analytically shown that the position estimate of TDOA is exactly the same as that of TOA even when bias errors are included in range measurements with different magnitudes. By computer simulation, position estimation error and error distribution are analyzed in presence of range bias errors.

Adaptive Inventory Control Models in a Supply Chain with Nonstationary Customer Demand (비안정적인 고객수요를 갖는 공급사슬에서의 적응형 재고관리 모델)

  • Baek, Jun-Geol;Kim, Chang Ouk;Jun, Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.2
    • /
    • pp.106-119
    • /
    • 2005
  • Uncertainties inherent in customer demand patterns make it difficult for supply chains to achieve just-in-time inventory replenishment, resulting in loosing sales opportunity or keeping excessive chain wide inventories. In this paper, we propose two intelligent adaptive inventory control models for a supply chain consisting of one supplier and multiple retailers, with the assumption of information sharing. The inventory control parameters of the supplier and retailers are order placement time to an outside source and reorder points in terms of inventory position, respectively. Unlike most extant inventory control approaches, modeling the uncertainty of customer demand as a stationary statistical distribution is not necessary in these models. Instead, using a reinforcement learning technique, the control parameters are designed to adaptively change as customer demand patterns change. A simulation based experiment was performed to compare the performance of the inventory control models.

Reliability Modeling and Analysis for a Unit with Multiple Causes of Failure (다수의 고장 원인을 갖는 기기의 신뢰성 모형화 및 분석)

  • Baek, Sang-Yeop;Lim, Tae-Jin;Lie, Chang-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.4
    • /
    • pp.609-628
    • /
    • 1995
  • This paper presents a reliability model and a data-analytic procedure for a repairable unit subject to failures due to multiple non-identifiable causes. We regard a failure cause as a state and assume the life distribution for each cause to be exponential. Then we represent the dependency among the causes by a Markov switching model(MSM) and estimate the transition probabilities and failure rates by maximum likelihood(ML) method. The failure data are incomplete due to masked causes of failures. We propose a specific version of EM(expectation and maximization) algorithm for finding maximum likelihood estimator(MLE) under this situation. We also develop statistical procedures for determining the number of significant states and for testing independency between state transitions. Our model requires only the successive failure times of a unit to perform the statistical analysis. It works well even when the causes of failures are fully masked, which overcomes the major deficiency of competing risk models. It does not require the assumption of stationarity or independency which is essential in mixture models. The stationary probabilities of states can be easily calculated from the transition probabilities estimated in our model, so it covers mixture models in general. The results of simulations show the consistency of estimation and accuracy gradually increasing according to the difference of failure rates and the frequency of transitions among the states.

  • PDF

Application of Artificial Neural Networks to Predict Dynamic Responses of Wing Structures due to Atmospheric Turbulence

  • Nguyen, Anh Tuan;Han, Jae-Hung;Nguyen, Anh Tu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.474-484
    • /
    • 2017
  • This paper studies the applicability of an efficient numerical model based on artificial neural networks (ANNs) to predict the dynamic responses of the wing structure of an airplane due to atmospheric turbulence in the time domain. The turbulence velocity is given in the form of a stationary Gaussian random process with the von Karman power spectral density. The wing structure is modeled by a classical beam considering bending and torsional deformations. An unsteady vortex-lattice method is applied to estimate the aerodynamic pressure distribution on the wing surface. Initially, the trim condition is obtained, then structural dynamic responses are computed. The numerical solution of the wing structure's responses to a random turbulence profile is used as a training data for the ANN. The current ANN is a three-layer network with the output fed back to the input layer through delays. The results from this study have validated the proposed low-cost ANN model for the predictions of dynamic responses of wing structures due to atmospheric turbulence. The accuracy of the predicted results by the ANN was discussed. The paper indicated that predictions for the bending moments are more accurate than those for the torsional moments of the wing structure.

Derivation of Simplified Formulas to Predict Deformations of Plate in Steel Forming Process with Induction Heating (유도가열을 이용한 강판성형공정에서 변형량 예측을 위한 계산식 유도)

  • Bae, Kang-Yul;Yang, Young-Soo;Hyun, Chung-Min;Won, Seok-Hee;Cho, Si-Hoon
    • Journal of Welding and Joining
    • /
    • v.25 no.4
    • /
    • pp.58-64
    • /
    • 2007
  • Recently, the electro-magnetic induction process has been utilizing to substitute the flame heating process in shipyard. However, few studies have been performed to exactly analyze the deformation mechanism of the heating process with mathematical model. This is mainly due to the difficulty of modeling the inductor travelling on plate during the process. In this study, heat flux distribution of the process is firstly numerically analysed with the assumption that the process has a quasi-stationary state and also with the consideration that the heat source itself highly depends on the temperature of base plate. With the heat flux, the thermal and deformation analyses are then performed with a commercial program for 34 combinations of heating parameters. The deformations obtained and heating parameters are synthesized with a statistical method to produce simplified formulas, which easily give the relation between the heating parameters and deformations. The formulas are well compared with results of experiment.

A Simulation Based Assessment for Evaluating the Effectiveness of Quasi-Zenith Satellite System

  • Suh, Yong-Cheol;Shibasaki, Ryosuke
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.181-190
    • /
    • 2003
  • Since the operation of the first satellite-based navigation service, satellite positioning has played an increasing role in both surveying and geodesy, and has become an indispensable tool for precise relative positioning. However, in some situations, e.g. at a low angle of elevation, the use of satellites for navigation is seriously restricted because obstacles like buildings and mountains can block signals. As a mean to resolve this problem, the quasi-zenith satellite system has been proposed as a next-generation satellite navigation system. Quasi-zenith satellite is a system which simultaneously deploys several satellites in a quasi-zenith geostationary orbit so that one of the satellites always stay close to the zenith if viewed from a specific point on the ground of East Asia. Thus, if a position measurement function compatible with CPS is installed in the quasi-zenith and stationary satellites, and these satellites are utilized together with the CPS, four satellites can be accessed simultaneously nearly all day long and a substantial improvement in position measurement, especially in metropolitan areas, can be achieved. The purpose of this paper is to evaluate the effectiveness of quasi-zenith satellite system on positioning accuracy improvement through simulation by using precise orbital information of the satellites and a three-dimensional digital map. Through this developed simulation system, it is possible to calculate the number of simultaneously visible satellites and available area for positioning without the need of actual observation. Furthermore, this system can calculate the Dilution Of Precision (DOP) and the error distribution.

Rainfall tendency analysis using transition probability and the Gamma distribution parameters (천이확률 및 Gamma 분포 매개변수를 이용한 강우 경향성 분석)

  • Lee, Taewoo;Joo, Hong Jun;Kim, Soojun;Kim, Hung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.174-174
    • /
    • 2018
  • 현재 우리나라에서는 지속적으로 홍수 및 가뭄에 대한 예방사업을 진행하고 있음에도 불구하고 해마다 피해가 발생하고 있으며, 이에 따라 효율적인 이수 치수 계획이 절실히 필요한 실정이다. 하지만 우리나라의 경우, 강우의 발생 특성이 과거와는 다른 양상을 보이고 있다. 따라서 강우빈도해석 시 강우특성이 변화하지 않는다는 정상성(stationary)을 가정하는 기존의 방법론은 문제가 있다. 이에 본 연구에서는 강우특성이 어떻게 변화하였는지 평가하는 방법론에 대하여 고찰하고자 한다. 우선, 대상 강우관측소의 과거 일강수량 자료를 수집하고 연도별 강우발생 천이확률(Markov Chain)과 강우량 확률분포(Gamma)의 매개변수를 산정한다. 그리고 일강우시계열의 경향성 분석(Mann-Kendall test) 결과와 함께 비교 검토하여 어떠한 방법론이 강우특성 변화를 더욱 잘 추정하는지에 대하여 평가한다. 본 연구를 통하여 우리나라 강우특성의 변화를 더욱 정확하게 추정할 수 있는 기틀을 마련할 수 있을 것이며, 향후 비정상성 기반의 기후변화 모의를 수행하기 위한 기초연구로 활용될 수 있을 것으로 기대된다.

  • PDF

An Engle-Granger and Johansen Cointegration Approach in Testing the Validity of Fisher Hypothesis in the Philippines

  • CAMBA, Abraham C. Jr.;CAMBA, Aileen L.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.12
    • /
    • pp.31-38
    • /
    • 2021
  • This study contributes to the existing literature and tries to analyze the validity of the Fisher hypothesis in the Philippines. Using monthly data from January 1995 to December 2020, the empirical analysis used the Engle-Granger and Johansen cointegration testing technique. The correlation coefficient suggests a strong positive association. All things being equal, a rise in inflation leads to a rise in the nominal interest rate. The unit-root tests show that inflation and the nominal interest rate are both stationary. Based on both Engle-Granger and cointegrating regression Durbin-Watson tests, the nominal interest rate and inflation are cointegrated. Likewise, the results from Johansen cointegration indicate that there exists a long-run relationship between the variables. However, we rejected a one-to-one relationship between nominal interest rate and inflation. The error correction term coefficient (ECM) shows that it is statistically significant suggesting that the nominal interest rate adjusts to the inflation rate with a lag. The Pair-wise Granger Causality test reported a bi-directional causal relationship between nominal interest rate and inflation. Inflation targeting has been the monetary policy framework of choice for most central banks. In essence, the conclusions of this study are useful to central banks because they help them better comprehend the long-run equilibrium relationship between the nominal interest rate and inflation.

Laser Scabbling of a Concrete Block Using a High-Power Fiber Laser

  • Oh, Seong Y.;Lim, Gwon;Nam, Sungmo;Kim, TaekSoo;Kim, Ji-Hyun;Chung, Chul-Woo;Park, Hyunmin;Kim, Seonbyeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.289-295
    • /
    • 2021
  • A laser scabbling experiment was performed using a high-power fiber laser to investigate the removal rate of the concrete block and the scabbled depth. Concrete specimens with a 28-day compressive strength of 30 MPa were used in this study. Initially, we conducted the scabbling experiment under a stationary laser beam condition to determine the optimum scan speed. The laser interaction time with the concrete surface varied between 3 s and 40 s. The degree of spalling and vitrification on the surface was primarily dependent on the laser interaction time and beam power. Furthermore, thermal images were captured to investigate the spatial and temporal distribution of temperature during the scabbling process. Based on the experimental results, the scan speed at which the optical head moved over the concrete was set to be 300 mm·min-1 or 600 mm·min-1 for the 4.8-kW or 6.8-kW laser beam, respectively. The spalling rates and average depth on the concrete blocks were measured to be 87 cm3·min-1 or 227 cm3·min-1 and 6.9 mm or 9.8 mm with the 4.8-kW or 6.8-kW laser beams, respectively.