• Title/Summary/Keyword: Stationary culture

Search Result 215, Processing Time 0.027 seconds

Screening of Lactic Acid Bacteria as Starter Culture for Making Fermented Sausage (발효 소시지 제조를 위한 기능성 유산균의 선발)

  • Han, Soo-Min;Kim, Young-Joo;Lee, Hong-Chul;Chin, Koo-Bok;Oh, Se-Jong
    • Food Science of Animal Resources
    • /
    • v.26 no.4
    • /
    • pp.511-516
    • /
    • 2006
  • The objectives of this study was to compare the probiotic characteristics of lactic acid bacteria (LAB) for their ability to assimilate cholesterol, production of bacteriocin, inhibition of angiotensin I-converting enzyme (ACE), and viability under artificial gastrointestinal fluids. Among tested lactic acid bacteria, L167 strain exhibited the highest ACE inhibitory activity (58.75%). The production of ACE inhibitory peptide derived from fermented milk by L167 strain started at the beginning of stationary phase with maximum activity occurring late of the stationary phase. The highest ACE inhibitory activity was observed at 20 h in 10% skim milk medium. L155 strain exhibited cholesterol assimilation activity compared with probiotic strains such as Lactobacillus acidophilus ATCC 43121. With addition of bacteriocin culture, viable cells of Staphylococcus aureus in fermented sausage were slightly decreased during storage. Among selected strains of LAB, 3 strains weve identified as L. plantarum (L155, L165, L167), and two strains were identified as Pediococcus damnosus (L12) and L. paracasei ssp. paracasei (P113) by use of API carbohydrate fermentation pattern and physiological tests.

The Diversity of Lysine-Acetylated Proteins in Escherichia coli

  • Yu, Byung-Jo;Kim, Jung-Ae;Moon, Jeong-Hee;Ryu, Seong-Eon;Pan, Jae-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1529-1536
    • /
    • 2008
  • Acetylation of lysine residues in proteins is a reversible and highly regulated posttranslational modification. However, it has not been systematically studied in prokaryotes. By affinity immunoseparation using an anti-acetyllysine antibody together with nano-HPLC/MS/MS, we identified 125 lysine-acetylated sites in 85 proteins among proteins derived from Escherichia coli. The lysine-acetylated proteins identified are involved in diverse cellular functions including protein synthesis, carbohydrate metabolism, the TCA cycle, nucleotide and amino acid metabolism, chaperones, and transcription. Interestingly, we found a higher level of acetylation during the stationary phase than in the exponential phase; proteins acetylated during the stationary phase were immediately deacetylated when the cells were transferred to fresh LB culture medium. These results demonstrate that lysine acetylation is abundant in E. coli and might be involved in modifying or regulating the activities of various enzymes involved in critical metabolic processes and the synthesis of building blocks in response to environmental changes.

Major Fe-Superoxide Dismutase (FeSOD) Activity in Pseudomonas putida is Essential for Survival Under Conditions of Oxidative Stress During Microbial Challenge and Nutrient Limitation

  • Kim, Young-Cheol;Kim, Cheol-Soo;Cho, Baik-Ho;Anderson, Anne-J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.859-862
    • /
    • 2004
  • An isolate of Pseudomonas putida has been found to aggressively colonize root tips and induce plant resistance to Fusarium wilt. However, P. putida mutants lacking Fe-superoxide dismutase (SOD) or both FeSOD and MnSOD activities are less competitive in root tip colonization. In the current study, the growth of an FeSOD mutant was found to be more sensitive than that of the wild-type or a MnSOD mutant to oxidative stress imposed by paraquat treatment and culturing with the soil fungus Talaromyces flavus, which generates reactive oxygen species. Also, the loss of culturability with an aging stationary-phase culture was greater for a double SOD mutant than an FeSOD mutant, while no reduction in culturability was observed with the wild-type and a MnSOD mutant under the same protracted stationary-phase conditions. Accordingly, it was concluded that FeSOD activity is the major form of SOD in P. putida and plays an essential role in survival under stress conditions when increased oxidative stress is encountered.

The TIME AS SPACE Metaphor in English and in French: A Cognitive Analysis

  • Hamdi, Sondes
    • Cross-Cultural Studies
    • /
    • v.28
    • /
    • pp.67-86
    • /
    • 2012
  • Metaphors were conceived of as a figure of speech whose role consisted in merely ornamenting the language. However, with their seminal book Metaphors we live by (1980), Lakoff and Johnson have revolutionized the conception of metaphors by placing them as central to human language, thought and action. Cognitive linguists argue that humans tend to conceptualize abstract concepts, such as time, through more experiential and tangible concepts. For instance, it has been observed that the abstract concept of time is conceptualized as space in several unrelated languages. According to the Conceptual Metaphor Theory (CMT), TIME AS SPACE metaphor covers two more specific metaphors: (1) The MOVING TIME metaphor wherein the observer is conceived as a stationary entity, as in The end of the academic year is getting closer; and (2) The TIME AS A LOCATION metaphor wherein times are conceived as stationary points and the observer is conceived as moving relative to these locations, as in We are first approaching the end of the year. This paper aims at probing the validity of the CMT representations of time on the basis of an analysis of time metaphors in two languages: English and French. This analysis is conducted within the framework of CMT. The results corroborate the CMT representations of time, suggesting that in both languages the abstract concept of time is expressed in spatial terms. In English, as in French, time is conceptualized as a moving entity and as having extension in space. In both languages, time can be seen as bounded; therefore, one can perform actions within defined limits of time.

Production of Citric Acid in a Flat-type Membrane Bioreactor (평판형 막 생물 반응기를 이용한 구연산의 생산)

  • 심상준;장호남
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.252-257
    • /
    • 1992
  • A flat-type membrane bioreactor(FMBR ) for aerobic whole cell immobilization was developed and its performance for the citric acid production was investigated using Aspergillus niger (KCTC 1232). The reactor consisted of three layers. The top layer contained flowing air for oxygen supply, the middle layer had stationary cells, and the bottom layer had flowing aqueous nutrients. The initial pH of the culture medium played an important role in citric acid production and the lower initial pH of the culture medium resulted in a higher citric acid yield. Under air and pure oxygen aerations the volumetric productivity reached 0.20 and 0.40g/Lh. Furthermore, the productivity improved with the increase of the culture medium feed rate.

  • PDF

Cellular Autolysis of Clostridium butyricum ID-113 (Clostridium butyricum ID의 자가분해)

  • Kwag, Jong-Hui;Lee, Se-Yong;Kim, Tae-Han;Lee, Jung-Chi
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 1989
  • The optimum conditions for cellular autolysis in Clostridium butyricum ID-113 have been investigated. Cellular autolysis was optimal at pH 1.0 in 0.05 M potassium phosphate buffer and at 37$^{\circ}C$. The rate of cellular autolysis depended on the age of culture. The most rapid cellular autolysis occurred in the cells of mid-exponentially growing cultures, but cellular autolysis decreased sharply when the cultures entered the stationary phase. A growing culture of Cl. butyricum ID-113 was induced to autolyze and lost its turbidity spontaneously in the hypertonic NaCl, sucrose, or glucose medium. The autolytic enzyme activity was found In the autolysate of cells and the supernatant of the culture.

  • PDF

사과 겹무늬썩음병균에 대한 Bacillus sp. SS279의 항진균활성과 생물학적 방제

  • Kim, Sam-Sun;Joo, Gil-Jae;Uhm, Jae-Youl;Kim, Young-Jae;Rhee, In-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.527-533
    • /
    • 1997
  • From apple skin, we isolated a bacterial strain which strongly inhibited the growth of apple white rot fungus, Botryosphaeria dothidea. The isolated strain, designated as SS279, was identified to be the genus Bacillus. The antifungal activity of Bacillus sp. SS279 was found in the culture filtrate. The production of antifungal substances occurred during logarithmic phase and was the highest when cultures reached the stationary growth phase. The optimum ranges of temperature and pH for its production were 25-30$\circ$C and 4.5-9.0, respectively. The culture filtrate of Bacillus sp. SS279 exhibited a strong inhibitory effect on the spore germination and germ tube elongation of B. dothidea. Autoclaved culture filtrate of Bacillus sp. SS279 showed only a slight decrease in antifungal activity, indicating that the Bacillus sp. SS279 produce heat-stable antifungal substances. In in vivo bioassay, Bacillus sp. SS279 also showed antagonistic activity against apple white rot caused by B. dothidea.

  • PDF

Enhancement of eurycomanone biosynthesis in cell culture of longjack (Eurycoma longifolia) by elicitor treatment

  • Nhan, Nguyen Huu;Loc, Nguyen Hoang
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.340-346
    • /
    • 2018
  • In this study, the effect of elicitors such as yeast extract (YE), methyl jasmonate (MeJA) and salicylic acid (SA) on the accumulation of eurycomanone in Eurycoma longifolia cell cultures were investigated. Suspension cells of E. longifolia was cultured in Murashige and Skoog (MS) medium supplemented with 30 g/L sucrose, 1.25 mg/L naphthaleneacetic acid (NAA) and 1 mg/L kinetin at a shaking speed of 120 rpm. Elicitors were added in the culture at different concentrations and times to stimulate eurycomanone accumulation in the Eurycoma longifolia cells. Eurycomanone content was determined by HPLC with a C18 column, flow rate of 0.8 mL/min, run time of 17.5 min, and a detector wavelength of 254 nm. The stationary phase was silica gel and the mobile phase was acetonitrile: $H_2O$. Non-elicited cells were used as the control. The study showed the effect of different elicitor concentrations, YE at 200 mg/L, MeJA at $20{\mu}M$ and SA at $20{\mu}M$ stimulated high production of eurycomanone. In which, treatment of $20{\mu}M$ MeJA after 4 days of culture resulted in the highest accumulation of this compound (17.36 mg/g dry weight), approximately 10-fold higher than that of untreated cells (1.70 mg/g dry weight).

Sigma S Involved in Bacterial Survival of Ralstonia pseudosolanacearum (Ralstonia pseudosolanacearum 생존에 관여하는 Sigma S 역할)

  • Hye Kyung Choi;Eun Jeong Jo;Jee Eun Heo;Hyun Gi Kong;Seon-Woo Lee
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.148-156
    • /
    • 2024
  • Ralstonia pseudosolanacearum, a plant pathogenic bacterium that can survive for a long time in soil and water, causes lethal wilt in the Solanaceae family. Sigma S is a part of the RNA polymerase complex, which regulates gene expression during bacterial stress response or stationary phase. In this study, we investigated the role of sigma S in R. pseudosolanacearum under stress conditions using a rpoS-defective mutant strain of R. pseudosolanacearum and its wild-type strain. The phenotypes of rpoS-defective mutant were complemented by introducing the original rpoS gene. There were no differences observed in bacterial growth rate and exopolysaccharide production between the wild-type strain and the rpoS mutant. However, the wild-type strain responded more sensitively to nutrient deficiency compared to the mutant strain. Under the nutrient deficiency, the rpoS mutant maintained a high bacterial viability for a longer period, while the viability of the wild-type strain declined rapidly. Furthermore, a significant difference in pH was observed between the culture supernatant of the wild-type strain and the mutant strain. The pH of the culture supernatant for the wild-type strain decreased rapidly during bacterial growth, leading to medium acidification. The rapid decline in the wild-type strain's viability may be associated with medium acidification and bacterial sensitivity to acidity during transition to the stationary phase. Interestingly, the rpoS mutant strain cannot utilize acetic acid, D-alanine, D-trehalose, and L-histidine. These results suggest that sigma S of R. pseudosolanacearum regulates the production or utilization of organic acids and controls cell death during stationary phase under nutrient deficiency.

Citric Acid Fermentation from Mandarin Orange Peel by Aspergillus niger (감귤과피를 기질로 한 Aspergillus niger의 구연산 발효)

  • 강신권;박형환;이재호;이윤수;권익부;성낙계
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.510-518
    • /
    • 1989
  • Most of orange peels are disposed from orange juice manufacturing process. Thus, our purpose is to utilize these orange peels as fermentation substrate. We have investigated culture conditions and factors influencing citric acid production by an isolated strain, Asp. niger. Citric acid production was much higher in semisolid culture than in submerged culture and the particle size of ground orange peels was favored at 20 mesh in semisolid culture. The optimal pH and temperature were 4.5-5.0 and 3$0^{\circ}C$ respectively and the temperature cycling at 35$^{\circ}C$ for 20 hrs durig exponential phase, 1$0^{\circ}C$ for 4 hrs and 3$0^{\circ}C$ during stationary phase showed higher citric acid production than did at fixed temperature, 3$0^{\circ}C$. The addition of NH$_4$NO$_3$0.2%, MgSO$_4$7$H_2O$ 0.1%, methanol 2.5%, ethanol 1.5%, to culture medium promoted citric acid production but the addition of trace metal ions as nutrients had not effect on the acid production in orange peel medium. Under the optimal culture conditions, maximum yield of citric acid was 80.4% in solid medium. Almost of all original components of citrus peel was consumed by Asp. niger during fermentation.

  • PDF