• Title/Summary/Keyword: Station-keeping

Search Result 109, Processing Time 0.029 seconds

Phase Jitter Analysis of Overlapped Signals for All-to-All TWSTFT Operation

  • Juhyun Lee;Ju-Ik Oh;Joon Hyo Rhee;Gyeong Won Choi;Young Kyu Lee;Jong Koo Lee;Sung-hoon Yang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.245-255
    • /
    • 2023
  • Time comparison techniques are necessary for generating and keeping Coordinated Universal Time (UTC) and distributing standard time clocks. Global Navigation Satellite System (GNSS) Common View, GNSS All-in-View, Two-Way Satellite Time and Frequency Transfer (TWSTFT), Very Long Baseline Interferometry (VLBI), optical fiber, and Network Time Protocol (NTP) based methods have been used for time comparison. In these methods, GNSS based time comparison techniques are widely used for time synchronization in critical national infrastructures and in common areas of application such as finance, military, and wireless communication. However, GNSS-based time comparison techniques are vulnerable to jamming or interference environments and it is difficult to respond to GNSS signal disconnection according to the international situation. In response, in this paper, Code-Division Multiple Access (CDMA) based All-to-All TWSTFT operation method is proposed. A software-based simulation platform also was designed for performance analysis in multi-TWSTFT signal environments. Furthermore, code and carrier measurement jitters were calculated in multi-signal environments using the designed simulation platform. By using the technique proposed in this paper, it is anticipated that the TWSTFT-based time comparison method will be used in various fields and satisfy high-performance requirements such as those of a GNSS master station and power plant network reference station.

Enhancement of wave-energy-conversion efficiency of a single power buoy with inner dynamic system by intentional mismatching strategy

  • Cho, I.H.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.203-217
    • /
    • 2013
  • A PTO (power-take-off) mechanism by using relative heave motions between a floating buoy and its inner mass (magnet or amateur) is suggested. The inner power take-off system is characterized by a mass with linear stiffness and damping. A vertical truncated cylinder is selected as a buoy and a special station-keeping system is proposed to minimize pitch motions while not affecting heave motions. By numerical examples, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC(wave energy converter) theory. Then, based on the developed theory, several design strategies are proposed to further enhance the maximum PTO, which includes the intentional mismatching among heave natural frequency of the buoy, natural frequency of the inner dynamic system, and peak frequency of input wave spectrum. By using the intentional mismatching strategy, the generated power is actually increased and the required damping value is significantly reduced, which is a big advantage in designing the proposed WEC with practical inner LEG (linear electric generator) system.

INTRODUCTION OF AOCS HARDWARE CONFIGURATION FOR COMS

  • Park, Young-Woong;Park, Keun-Joo;Lee, Hoon-Hee;Ju, Gwang-Hyeok
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.207-210
    • /
    • 2007
  • A part of the big differences between LEO(Low Earth Orbit) and GEO(Geostationary Earth Orbit) satellite is that transfer orbit is used or not or what tolerance of the position on the mission orbit is permitted. That is to say, the transfer orbit is not used and the constraint of orbit position is not adapted on LEO satellite. Whereas for GEO satellite case, the transfer orbit shall be used due to the very high altitude and the satellite shall be stayed in the station keeping box which is permitted on the mission orbit. These phases are functions for AOCS mission. The aim of this paper is to introduce the AOCS hardware configuration for COMS (Communication, Ocean and Meteorological Satellite). The AOCS hardware of COMS consist of 3 Linear Analogue Sun Sensors (LIASS), 3 Bi-Axis Sun Sensors (BASS), 2 Infra-Red Earth Sensors (IRES), 3 Fiber Optical Gyroscopes (FOG), 5 momentum wheels and 14 thrusters. In this paper, each component is explained how to be used, how to locate and what relation between the AOCS algorithm and these components.

  • PDF

Design of the Automatic Flight and Guidance Controller for 50m Unmanned Airship Platform

  • Lee, Sang-Jong;Kim, Seong-Pil;Kim, Tae-Sik;Kim, Dong-Min;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.64-75
    • /
    • 2005
  • The Stratospheric Airship Platform (SAP) has a capability of performing the autonomous and guidance flight to satisfy given missions. To be used as the High Altitude Platforms (HAPs), the capabilities of controlling platform's accurate position and keeping the station point are the most important features. Under this circumstances Autonomous Flight Control System (AFCS) is a critical system and plays a key role in achieving the given requirements and succeeding in missions. In this paper, the design and analysis results of the AFCS algorithms and controller are presented. The brief summary of the AFCS hardware structure is also explained. The autopilot controller and guidance logics were designed based on the linear dynamics of the unmanned airship platform and the full nonlinear dynamics was considered to evaluate and verify their performances.

The Generation of Local Terrain Model Using Digital Close-Range Photogrammety (근거리 수치사진측랑을 이용한 국부지형모형의 생성)

  • 이재원;홍순헌;김정희;정공운
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.147-154
    • /
    • 2003
  • The close-range photogrammetry is a surveying technique the acquiring the 3D object from 2D geometric appearance shown in the image. Camera treatment is relatively so simple. Camera position refer to the object can be freely adjusted by locating the exposure station at any site. So it is used effectively on a small area or object for survey. In this study, using the digital camera which has capacity of keeping numerical value by itself and easy carrying, we analyze the positioning error according to various change of photographing condition. Also we try to find a effective method of acquiring basis data for 3D monitoring of high-accuracy in sub-pixel degree thorough digital close-range photogrammetry with bundle adjustment for local terrain model generation.

Cluster Group Multicast by Weighted Clustering Algorithm in Mobile Ad-hoc Networks (이동 에드-혹 네트워크에서 조합 가중치 클러스터링 알고리즘에 의한 클러스터 그룹 멀티캐스트)

  • 박양재;이정현
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.37-45
    • /
    • 2004
  • In this paper we propose Clustered Group Multicast by Clustering Algorithm in Wireless Mobile Ad-hoc Network. The proposed scheme applies to Weighted Cluster Algorithm Ad-hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any centralized administration or reliable support services such as wired network and base station. In ad hoc network muting protocol because of limited bandwidth and high mobility robust, simple and energy consume minimal. WCGM method uses a base structure founded on combination weighted value and applies combination weight value to cluster header keeping data transmission by seeped flooding, which is the advantage of the exiting FGMP method. Because this method has safe and reliable data transmission, it shows the effect to decrease both overhead to preserve transmission structure and overhead for data transmission.

Reduction of Outage Probability due to Handover by Mitigating Inter-cell Interference in Long-Term Evolution Networks

  • Hussein, Yaseein Soubhi;Ali, Borhanuddin Mohd;Rasid, Mohd Fadlee A.;Sali, Aduwati
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.554-563
    • /
    • 2014
  • The burgeoning growth of real-time applications, such as interactive video and VoIP, places a heavy demand for a high data rate and guarantee of QoS from a network. This is being addressed by fourth generation networks such as Long-Term Evolution (LTE). But, the mobility of user equipment that needs to be handed over to a new evolved node base-station (eNB) while maintaining connectivity with high data rates poses a significant challenge that needs to be addressed. Handover (HO) normally takes place at cell borders, which normally suffers high interference. This inter-cell interference (ICI) can affect HO procedures, as well as reduce throughput. In this paper, soft frequency reuse (SFR) and multiple preparations (MP), so-called SFRAMP, are proposed to provide a seamless and fast handover with high throughput by keeping the ICI low. Simulation results using LTE-Sim show that the outage probability and delay are reduced by 24.4% and 11.9%, respectively, over the hard handover method - quite a significant result.

QoS-Guaranteed Capacity of Centralized Cognitive Radio Networks with Interference Averaging Techniques

  • Wang, Jing;Lin, Mingming;Hong, Xuemin;Shi, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.18-34
    • /
    • 2014
  • It is widely believed that cognitive radio (CR) networks have an opportunistic nature and therefore can only support best-effort traffics without quality-of-service (QoS) guarantees. In this paper, we propose a centralized CR network that adopts interference averaging techniques to support QoS guaranteed traffics under interference outage constraints. In such a CR network, a CR user adaptively adjusts its transmit power to compensate for the channel loss, thereby keeping the receive signal power at the CR base station (BS) at a constant level. The closed-form system capacity of such a CR network is analyzed and derived for a single cell with one CR BS and multiple CR users, taking into account various key factors such as interference outage constraints, channel fading, cell radius, and locations of primary users. The accuracy of the theoretical results is validated by Monte Carlo simulations. Numerical and simulation results show promising capacity potential for deploying QoS-guaranteed CR networks in frequency bands with fixed primary receivers. Our work can provide theoretical guidelines for the strategic planning of centralized CR networks.

Effect of the Turret's Rotational Damping on the Heading Stability of a Turret-Moored FPSO

  • Min, Soo Young;Park, Sung Boo;Shin, Seong Yun;Shin, Da Gyun;Jung, Kwang Hyo;Lee, Jaeyong;Lee, Seung Jae;Han, Solyoung;Chun, Yun Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.304-315
    • /
    • 2020
  • The main features of offshore turret platforms are station-keeping and weathervaning functions. Due to the complexity of the yaw motion, abundant research is being done to verify the factors that affect the heading stability. Simulations are used for studies that are not possible with experiments, but the conditions must be verified using experimental results. This study presents methods to estimate turret-related parameters such as the rotational stiffness and rotational damping. A time series analysis was performed, and the results showed that the calculation using the obtained parameters agreed well with experimental results.

Experimental Study of Surge Motion of a Floater using Flapping Foils in Waves (파도에서 플래핑 포일을 적용한 부유체의 서지 운동에 관한 실험적 연구)

  • Sim, Woo-lim;Rupesh, Kumar;Yu, Youngjae;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.211-216
    • /
    • 2019
  • In order to utilize the marine environment in various fields such as renewable energy and offshore plant, it is necessary to utilize the far and deep ocean. However, there is still a limit to overcome and utilize the extreme deep-sea environment. Currently, the mooring system, which is the representative position control method of floating structure, has a structural and economic limit to expand the installation range to extreme deep-sea environment. Research has been conducted to utilize wave energy by developing floater using flapping foil as an alternative for station keeping in the deep sea by University of Ulsan. Based on the research, a model test was conducted for application to actual structures. In this study, we investigate how the floating body with passive flapping foils move in regular waves with different periods and study the condition of the model that can maintain its position within a certain range by overcoming the movement.