• Title/Summary/Keyword: Static-GPS

Search Result 121, Processing Time 0.023 seconds

A Study on the Applicability of the Kinematic and the Static GPS Methods for Coastal Ocean Structure Survey

  • Lee, Byung-Gul;Yang, Sung-Kee;Kang, In-Jun
    • Journal of Environmental Science International
    • /
    • v.11 no.2
    • /
    • pp.103-110
    • /
    • 2002
  • The position fixing usually is determined by triangulation, traverse surveying and astronomy surveying. However, when the station is moving, it is impossible to determine its position continuously by the former method. By a satellite positioning method(GPS), this problem can be solved. In our study, we used two methods to determine the length and coordinate of a point position. One is a kinematic GPS method and the other is a static one. Each is based on carrier phase measurement and employs a relative position technique. We implemented observation experiments such as Geodimeter and DGPS(Differential GPS) successfully. To estimate the accuracy between the kinematic and static methods, we compared the results of Geodimeter, the kinematic, and the static. The results showed that the static is relatively a little more accurate than the kinematic. However, in the kinematic mode, when we received the GPS data for a long time, we found that the kinematic also had a high accuracy value for the length survey Finally, we applied the GPS to Jeju Harbor Breakwater to examine the applicability of GPS for coastal ocean structure based on the kinematics and the statics, respectively.

The Accuracy Analysis of RTK-GPS by Field Calibration in Plane Surveying (국지측량에서의 현장 Calibration에 의한 RTK-GPS 정확도 분석)

  • Park, Woon-Yong;Shin, Dong-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.2 s.20
    • /
    • pp.87-95
    • /
    • 2002
  • Real-time Kinematic GPS enables high accuracy Positioning by real time. If ambiguity use an integer solution, can obtain accuracy of several 'mm', and can obtain accuracy of tens 'em' if use real solution. In this study, We accomplish surveying by existent traditional surveying techniques (Total Station), Static GPS techniques and RTK-GPS techniques by Field Calibration about uniformity measuring point and then compared and ana1yzed each techniques positioning accuracy etc.. Result that achieve by Static-GPS in Plane area, about all measuring points, expressed error fewer than 3cm. Result that achieve RTK-GPS Surveying by Field Calibration in Plane area, could know that RTK-GPS techniques by Field Calibration is available in Plane area because expressing errors fewer than all 6cm, except case that do not get fixed solution of ambiguity Field Calibration RTK-GPS could know economically than existent conventional type measurement and existent GPS's measurement techniques that efficiency is very high.

  • PDF

Analysis of the Accuracy of Kinematic GPS Positioning (Kinematic GPS에 의한 3차원 위치결정의 정확도 분석)

  • 강준묵;김홍진;이형석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.2
    • /
    • pp.79-87
    • /
    • 1993
  • Executing various constructions and national land planning, it has rised importance how to acquire 3-dimensional geographical information efficiently. In conjunction with this, the concerned parties are interested in the accuracy of GPS positioning and applications. This study suggest the efficiency and possibility to apply geographical information construction by kinematic GPS surveying as comparing kinematic GPS results with triangulation, trilateration and static GPS results. In this study, we try to compare static with kinematic and can determine 3-D positions with difference of 6 mm in distance, 2"/10,000-4"/10,000, 20 cm in latitude, longitude and height at local area. In addition, difference from conventional surveying is about 1"/l0,000-3"/10,000 in horizontal. Therefore it is expected to apply kinematic GPS to make out topographic map and to construct data base associated with GIS.associated with GIS.

  • PDF

LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving (도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘)

  • Noh, Hanseok;Lee, Hyunsung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.

The Relationship Between Networks Accuracy and Duration of Session in Static GPS Method

  • Kang, Joon-Mook;Lee, Young-Wook;Park, Joung-Hyun;Lee, Eun-Soo
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • In order to investigate duration of session in static GPS method, data from a network of 7 points, with baseline length of from 64 km to 358 km, were processed. The network were observed by Trimble 4000SSE and Trimble 4000SSi with duration of 24 hours. Data extracted from this session were processed as if they were measured in 3, 6, 9 ... 21, and 24 hours session. The results (Baselines, Sloop Closures, Coordinates, and Standard errors of coordinates) of these sessions were compared to 24 hours one. Some conclusions were made, which seem to be useful in selection of duration for the same dimension GPS network for different purposes.

  • PDF

Performance Evaluation of the Low-cost, High-precision RTK Device RTAP2U for GPS-based Precise Localization

  • Kim, Hye-In;Kim, Yeong-Guk;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.67-73
    • /
    • 2021
  • The need for precise location data is growing across numerous markets, and so is the number of affordable high-precision GPS receivers. In this paper, we validated the performance of RTAP2U, a low-cost high-precision RTK receiver that was recently released. Two positioning modes were tested: static and driving. The static test conducted Zero-Baseline Single-RTK and Network-RTK survey for 57 hours and 51 hours, respectively. For the driving test, Network-RTK survey was conducted using VRS services provided by NGII based on Trimble PIVOT and Geo++ GNSMART. The static test showed about 1 cm horizontal and vertical accuracies, which is very stable considering the test duration longer than 50 hours. The integer ambiguity FIX rate marked a solid 100%. The driving test result also reached a 100% FIX rate. Horizontal and vertical accuracies were better than 2 cm and 3 cm, respectively. Researchers can refer to this paper when considering affordable high-precision GPS receivers as an option.

Displacement Analysis of Structures using RTK-GPS/Accelerometer Integration Methods (RTK-GPS와 가속도계 통합계산을 통한 구조물의 변위 해석)

  • Hwang, Jin-Sang;Yun, Hong-Sic;Lee, Dong-Ha;Hong, Sung-Nam;Suh, Yong-Cheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.6
    • /
    • pp.583-591
    • /
    • 2011
  • Accurate observation results of dynamic displacements are essential to the protection of civil structures. In this study, we evaluated the optimal methods of the RTK/GPS Accelerometer integration through comparison and analysis of several experiments results. Two methods will be used to calculate the dynamic displacements from the results of the acceleration data as well as two integration methods for measuring the dynamic, static, and quasi-static displacements by incorporating the displacement results from the RTK-GPS and Accelerometer. By using a Cantilever Beam and LVDT measurement, we were able to ensure that the different displacement comparisons would be reliable and accurate. As a results from experiments, the accelerometer processing method applied by use of accelerometers data was filtering with the double integral using FIR band-pass filter which is most optimal for assessing the dynamic displacements. Also, the integrated method using extracting substitution displacements is suitable for measuring synthetically the dynamic static and quasi-static displacements of civil structures with RTK-GPS and accelerometer.

저가의 후처리 GPS를 이용한 매핑 시스템 연구

  • 임수봉;이봉희
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.431-435
    • /
    • 2003
  • GPS측량 방법은 크게 나누어 후처리 방법과 실시간 처리 방법으로 구분되며 후처리 방법은 다시 Static, Stop&Go 및 동적(Kinematic) 방법으로 세분되고 실시간 처리 방법은 DGPS(Differential GPS)와 RTK(Realtime Kinematic) 방법으로 세분된다. 이와 같은 여러 가지 측량법 중 우리나라의 실무에서는 유독 후처리 방법 중의 Static 측량과 실시간 처리방법중의 DGPS 측량이 주로 사용되어 왔는데, 그런 배경에는 여러 가지 원인이 있으나 무엇보다도 가장 큰 원인은 공공측량 작업규정 등의 측량 관련 법규에서 다양한 종류의 GPS측량기법을 제도적으로 인정하지 못함으로 인하여 일반 측량기술자들의 GPS에 대한 인식이 결여된 때문이라 볼 수 있다.

  • PDF

The Accuracy Analysis of Each Test Area Short Baseline Using Satellite Navigation System (위성항법시스템을 이용한 대상지별 단기선 정확도 분석)

  • Park, Woon-Yong;Cha, Sung-Yeoul;Hong, Soon-Heon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.1 s.19
    • /
    • pp.51-57
    • /
    • 2002
  • GPS proved to very practical in the application of geodesy and surveying such Civil Engineering, control point surveying and the deformation surveying o( structure, but the accuracy of static GPS positioning is degraded at the sites which the visible satellites of GPS are less than 4, i.e. the urban area covered with the high building and the industrial zone. Thus, the combined GPS/GLONASS system was introduced to acquire the high accuracy of static positioning by a few satellites. So the combined GPS/GLONASS system show the good results at the sites which the accuracy of positioning is degraded due to few satellites, the cutoff of signal, and multipath in the urban area.

  • PDF

Deformation Monitoring of a Structure Using Kinematic GPS Surveying Technology (Kinematic GPS 측량기법에 의한 구조물의 변형 모니터링)

  • 이진덕
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.27-40
    • /
    • 1998
  • This paper addresses the suitability of GPS positioning technology to monitoring deformation and movement of structures. The first part of the study is an empirical quantitative study of the repeatability of GPS observations and the second part is a performance evaluation of kinematic GPS, which requires only a few minutes per a point, for monitoring deformation of an engineering structure. On the test network for monitoring of a earth am, four observations have been conducted repeatedly on different seasons and water levels. The reference network was observed in static mode, and monitoring points were observed respectively in rapid-static mode as well as in kinematic mode in each epoch and then the results were compared with those obtained by conventional surveying techniques. The repeatability of baseline vectors to better than average 7 mm in three dimensions was achieved in base line observations between reference points and also the unclosure of reference networks showed the range of 4 ppm to 27 ppm. Compared with conventional surveying techniques, the kinematic approach showed the differences of 3∼4 m in slope distances which were observed from reference points to monitoring points, and showed the differences of 4∼8 m in height. It was ascertained that the kinematic GPS technology provides an efficient alternative to deformation monitoring by conventional means which are capable of detecting movements in the order of 5 mm.

  • PDF