• Title/Summary/Keyword: Static water level

Search Result 67, Processing Time 0.025 seconds

Evaluation of Dermal Absorption Rate of Pesticide Chlorpyrifos Using In Vitro Rat Dermal Tissue Model and Its Health Risk Assessment

  • Kim, Su-Heyun;Jang, Jae-Bum;Park, Kyung-Hun;Paik, Min-Kyoung;Jeong, Sang-Hee
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.140-149
    • /
    • 2016
  • All pesticides must be assessed strictly whether safe or not when agricultural operators are exposed to the pesticides in farmland. A pesticide is commonly regarded as safe when estimated dermal absorption amount is lower than the acceptable operator's exposure level (AOEL). In this study, dermal absorption rate of chlorpyrifos, a widely used organophosphate insecticide, was investigated using rat dermal tissue model. Chlorpyrifos wettable powder solved in water (250, 500 and 2,500 ppm) was applied to freshly excised rat dermal slices ($341{\sim}413{\mu}m$ thickness) on static Franz diffusion cells at $32^{\circ}C$ for 6 hours. After exposure period of 6 hours, and then washing-at residual amount of chlorpyrifos was analyzed in dermal tissues, tape strips, washing solution, washing swabs of receptor bottles and receptor fluids at 1, 2, 4, 8 and 24 hours. Chlorpyrifos was only detected in dermal tissue but not found in receptor fluid at each concentration and time point, and the absorption rate of 250, 500 and 2,500 ppm was 2.36%, 1.96% and 1.69%, respectively. The estimated exposure level of chlorpyrifos was calculated as 0.012 mg/kg bw/day. The health risk for farmers in this condition is a level of concern because the estimated exposure level is 12 times higher than AOEL 0.001 mg/kg bw/day. However, actual health risk will be alleviated than estimated because absorbed chlorpyrifos is not permeated into internal body system and only retained in skin layer.

Prediction of Potential Shoreline Retreat by Sea Level Rise (해수면 상승에 의한 해안선의 잠재적 후퇴거리 산정)

  • 손창배
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 1999
  • Models of beach response due to sea level rise were verified by experiments and potential shoreline retreat around Korea and Japan was predicted. Wave tank experiments demonstrated that not only static retreat by water level rise but also additional retreat by wave action plays an important role in total retreat and additional retreat becomes important on the condition of high waves. The result of long-term analysis of tidal data over past 3 decades shows the tendency toward rise by an average of 1.79 mm/year, which is the result of rise in 29 regions and fall in 12 regions. Based on analyzed rate of long-term sea-level rise, potential shoreline retreats of study area after 50 years were calculated and the result shows serious loss of beach.

  • PDF

Anodizing Behavior and Silicides Control in Al-Si Alloy System (Al-Si 합금의 양극산화거동 및 규소화합물 제어)

  • Park, Jong Moon;Kim, Ju Seok;Kim, Jae Kwon;Kim, Su Rim;Park, No Jin;Oh, Myung Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • The anodic oxidation behavior of Si-containing aluminum alloy for diecasting was investigated. Especially, the property changes during anodization both on aluminum 1050 and 9 weight percentage silicon containing aluminum (Al-9Si) alloys were analyzed by the static current test. In order to fabricate a uniform anodic oxidation film by effect of Al-Si compound, nitric acid containing hydrofluoric acid had been used as a desmutter for aluminum alloy after alkaline etching. It was found that the level of voltage of Al-9Si alloy during the static current test was almost as double as higher than aluminum 1050 through anodization. By adding hydrofluoric acid in the nitric acid electrolyte, the silicon compound on the surface was removed, and the optimum amount of added hydrofluoric acid could be derived. It was also observed that the size of silicon compound formed on the surface could be refined by heat treatment at $500^{\circ}C$ and followed water quenching.

Evaluation of Pumping Rates for Multiple-Well Systems (군정 시스템의 취수량 평가)

  • Park, Nam-Sik;Kim, Sung-Yun;Kim, Boo-Gil;Kim, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.439-446
    • /
    • 2008
  • We have developed a method to evaluate pumping rates from a system of pumping-well family. For a given system actual pumping rates depend on pump characteristics and the sum of the static head and the dynamic head. The static head is the elevation difference between the natural groundwater level and the outlet of the pipeline that connects all the wells. Major components of the dynamic head are groundwater drawdown in the well and pipeline head loss. The dynamic head and the pump characteristics depend on the pumping rates. Actual pumping rates are determined at the intersections of the system total-head curves and the pump characteristic curves. The Newton-Raphson's method is used to solve the nonlinear simultaneous equations. The method is applied to a hypothetical well family. Impacts of various design and operational parameters on the pumping rates are analyzed.

Examination of 3D long-term viscoplastic behaviour of a CFR dam using special material models

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2019
  • Time dependent creep settlements are one of the most important causes of material deteriorations for the huge water structures such as concrete faced rockfill dams (CFRDs). For this reason, performing creep analyses of CFRDs is vital important for monitoring and evaluating of the future and safety of such dams. In this study, it is observed how changes viscoplastic behaviour of a CFR dam depending the time. Ilısu dam that is the longest concrete faced rockfill dam (1775 m) in the world is selected for the three dimensional (3D) analyses. 3D finite difference model of Ilısu dam is modelled using FLAC3D software based on the finite difference method. Two different special creep material models are considered in the numerical analyses. Wipp-creep viscoplastic material model and burger-creep viscoplastic material model were rarely used for the creep analyses of CFRDs in the last are taken into account for the concrete slab and rockfill materials-foundation, respectively. Moreover, interface elements are defined between the concrete slab-rockfill materials and rockfill materials-foundation to provide interaction condition for 3D model. Firstly, dam and foundation are collapsed under its self-weight and static behaviour of the dam is evaluated for the empty reservoir conditions. Then, reservoir water is modelled considering maximum water level of the dam and time-dependent creep analyses are performed for maximum reservoir condition. In this paper, maximum principal stresses, vertical-horizontal displacements and pore pressures that may occur on the dam body surface during 30 years (from 2017 to 2047) are evaluated in detail. According to numerical analyses, empty and maximum reservoir conditions of Ilısu dam are compared with each other in detail. 4 various nodal points are selected under the concrete slab to better seen viscoplastic behaviour changes of the dam and viscoplastic behaviour differences of these points during 30 years are graphically presented. It is clearly seen that horizontal-vertical displacements and principal stresses for maximum reservoir condition are more than the empty reservoir condition of the dam and significant pore pressures are observed during 30 years for maximum reservoir condition. In addition, horizontal-vertical displacements, principal stresses and pore pressures for 4 nodal points obviously increased until a certain time and changes decreased after this time.

Superhydrophobic Surfaces for condensation by using spray coating method

  • Oh, Seungtae;Seo, Donghyun;Lee, Choongyeop;Nam, Youngsuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.157.2-157.2
    • /
    • 2016
  • Water repellent surfaces may enhance the condensation by efficiently removing the condensed droplets. However, such surfaces may lose their original performance as they are exposed to external mechanical stresses. In this work, we fabricated spray-coated mechanically robust superhydrophobic surfaces using treated titanium dioxide (Type 1) or silica particles (Type 2). Then we compared the mechanical robustness of such surfaces with the silane-coated superhydrophobic surface and PEEK coated surface using a controlled-sand blasting method. The results show that the spray-coated samples can maintain the same level of the contact angle hysteresis than silane-coated superhydorphobic surface after sand blasting at 2 bar. The spray-coating method was applied to the tube type condenser and the condensation behaviors were observed within the environmental chamber with controlled pressure, humidity and non-condensable gas. Previously-reported droplet jumping was observed in the early stage of the condensation event, but soon the droplet jumping stopped and only dropwise condensation was observed since the condensed droplets were pinned on the cracks at spray-coated surfaces. The static contact angle decreases from $158.0^{\circ}$ to $133.2^{\circ}$, and hysteresis increases from $3.0^{\circ}$ to $23.5^{\circ}$ when active condensation occurs on such surfaces. This work suggests the benefits and limitation of spray-coated superhydrophobic condensers and help develop advanced condensers for practical use.

  • PDF

Evaluation of Modulus of Soils Using Various Laboratory Tests (다양한 실내시험을 이용한 지반의 탄성계수 평가)

  • 권기철;김동수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.345-352
    • /
    • 2000
  • It is very important to evaluate the reliable nonlinear modulus characteristics of soils not only in the analysis of geotechnical structures under working stress conditions but also for the soil dynamic problems. For the evaluation of modulus characteristics of soils, various tests have been mostly employed in laboratory. However, different testing techniques are likely to have different ranges of reliable strain measurements, different applied stress level, and different loading frequencies, and the modulus of soils can be affected by these variables. For reliable evaluation, therefore, those effects on the modulus need to be considered, and measured values should be effectively adjusted to actual conditions where the soil is working. In this paper, to evaluate the modulus characteristics of soils, laboratory testing such as free-free resonant column (FF-RC), resonant column (RC), torsional shear (TS), static TX, and cyclic M/sub R/ tests were performed. The effects of strain amplitude, loading frequency, loading cycles, confining pressure, density, and water content on modulus were investigated. It is shown that the FF-RC test, which is simple and inexpensive testing technique, can provide a reliable estimation of small strain Young's modulus (E/sub max/), and the modulus evaluated by various laboratory tests are comparable to each other fairly well when the effects of these factors are properly taken into account.

  • PDF

A Numerical Study on the Performance Analysis of the Mixed Flow Pump for FPSO (수치해석을 이용한 FPSO용 사류펌프 성능해석 연구)

  • Kang, Kyung-Won;Kim, Young-Hun;Kim, Young-Ju;Woo, Nam-Sub;Kwon, Jae-Ki;Yoon, Myung-O
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.12-17
    • /
    • 2011
  • The seawater lift pump system is responsible for maintaining the open canal level to provide the suction flow of circulating water pump at the set point. The objective of this paper is to design a 2-stage mixed flow pump (for seawater lifting) by inverse design method and to evaluate the overall performance and the local flow fields of the pump by using a commercial CFD code. Rotating speed of the impeller is 1,750 rpm with the flow rate of 2,700 $m^3$/h. Finite volume method with structured mesh and realized k-${\varepsilon}$ turbulent model is used to guaranty more accurate prediction of turbulent flow in the pump impeller. The numerical results such as static head, brake horse power and efficiency of the mixed flow pump are compared with the design data. The simulated results are good agreement with the design data less 3% error.

STUDY ON THE HYDRAULIC DESIGN OF 2 STAGE MIXED FLOW PUMP (2단 사류펌프의 임펠러 성능향상 방안 연구)

  • Kim, Y.J.;Woo, N.S.;Kwon, J.K.;Chung, S.K.;Park, U.S.;Bae, S.E.;Park, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.556-560
    • /
    • 2011
  • The seawater lift pump system is responsible for maintaining the open canal level to provide the suction flow of circulating water pump at the set point. The objective of this paper is to design a 2-stage mixed flow pump(for seawater lifting) by inverse design and to evaluate the overall performance and the local flow fields of the pump by using a commercial CFD code. Rotating speed of the impeller is 1,750 rpm with the flow rate of 2,700 $m^3/h$. Finite volume method with structured mesh and Realizable ${\kappa}-{\varepsilon}$ turbulent model is used to guaranty more accurate prediction of turbulent flow in the pump impeller. The numerical results such as static head brake horse power and efficiency of the mixed flow pump are compared with the reference data. Also, the periodic condition calculation method for the mixed flow pump was carried out in order to investigate the pump performance characteristics with the modification of impeller geometry.

  • PDF

EVALUATION OF THE APPLICABLE REACTIVITY RANGE OF A REACTIVITY COMPUTER FOR A CANDU-6 REACTOR

  • Lee, Eun Ki;Park, Dong Hwan;Lee, Whan Soo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.183-194
    • /
    • 2014
  • Recently, a CANDU digital reactivity computer system (CDRCS) to measure the worth of the liquid zone controller in a CANDU-6 was developed and successfully applied to a physics test of refurbished Wolsong Unit 1. In advance of using the CDRCS, its measureable reactivity range should be investigated and confirmed. There are two reasons for this investigation. First, the CANDU-6 has a larger reactor and smaller excore detectors than a general PWR and consequently the measured reactivity is likely to reflect the peripheral power variation only, not the whole core. The second reason is photo neutrons generated from the interaction of the moderator and gamma-rays, which are never considered in a PWR. To evaluate the limitations of the CDRCS, several tens of three-dimensional steady and transient simulations were performed. The simulated detector signals were used to obtain the dynamic reactivity. The difference between the dynamic reactivity and the static worth increases in line with the water level changes. The maximum allowable reactivity was determined to be 1.4 mk in the case of CANDU-6 by confining the difference to less than 1%.