• Title/Summary/Keyword: Static tension

Search Result 297, Processing Time 0.026 seconds

Fatigue Strength Evaluation of T-Peel Adhesive Joing for Light Weight Material (경량 재료의 T형 접합이음의 피로강도 평가)

  • Lee, K.Y.;Kong, B.S.;Choi, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.166-173
    • /
    • 1998
  • The evaluation of joint fatigue strength of light weight materials for an electrical vehicle body has been performed through T-peel joint tests with the design parameters such as joint style, adherend type, adherend thickness, adhesive thickness, and various adhesives. Fatigue strength was evaluated through 5-Hz, tension-tension, load controlled test with the zero stress ratio. It was observed that the fatigue strength of the joint increases with the increase of the adherend thickness. With the increase of the adhesive thickness, however, the fatigue strength of the joint increases insignificantly. An aluminum-FRP adherend combination shows much higher fatigue strength than an aluminum-aluminum adherend combination. The results of fatigue tests were found to be consistent with those of static tests.

  • PDF

EFFECT OF STRENGTH MISMATCH AND DYNAMIC LOADING ON THE DUCTILE CRACK INITIATION FROM NOTCH ROOT

  • An, Gyn-Baek;Yoshida, Satoshi;Ohata, Mitsuru;Toyoda, Masao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.145-150
    • /
    • 2002
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. It has been demonstrated by authors using round-bar specimens with circumferential notch in single tension that the critical strain to initiate ductile crack from specimen center depends considerably on stress triaxiality, but surface cracking of notch root is in accordance with constant strain condition. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal, elastic-plastic, dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

The Effects of Tail Contact for Spot Welding Peel-tension Specimen (점용접 박리-인장 시험편의 후면접촉 영향)

  • 이용복;정진성;박영근;최지훈
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.69-75
    • /
    • 1999
  • Spot welding has been used in the sheet metal joining processes because of its high productivity and convenience. In this study, predicting methods of fatigue life of spot welded joint have been investigated and fatigue and static tests were conducted with the peel-tension specimens using cold rolled steel plate(SPCC). Fatigue life of peel-tension spot welded joint was influenced by tail effect. Fatigue life evaluation using modified stress index parameter, considering the effective eccentric length, can predict the life more exactly than conventional stress index parameter.

  • PDF

Analytical Study on the Pullout Resistance Characteristics of Bored Pile (매입말뚝의 인발저항특성에 관한 연구)

  • Park, Jong-Bae;Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.281-289
    • /
    • 2016
  • Structural experiment result showed that PHC(d=600mm) Pile used as a common compression member could resist 83.6 ~ 91.6 tonf of ultimate tension force, if the adhesion of P.C. bar of PHC pile to the concrete foundation is strengthened. Considering a proper safety factor to ultimate tension strength, PHC pile can substitute the anti-floating anchor, or reduce the number of anchors. For this purpose, pullout resistance behavior of a Bored pile embedded in real ground as well as structural tension strength of PHC pile must be evaluated. This study performed the static pullout tests to evaluate the pullout behavior of bored pile, and compared the test results with design value of side resistance. To evaluate the pullout resistance easily, static pullout test results were compared with dynamic loading test results using PDA. As a result, cement paste of the bored pile was hardened which is after 15 days, LH side resistance design value corresponded well to the Static pullout test results, also to the side resistance evaluated by dynamic loading test.

Analysis of Drawbead Process by Static-Explicit Finite Element Method

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1687-1692
    • /
    • 2002
  • The problem analyzed here is a sheet metal forming process which requires a drawbead. The drawbead provides the sheet metal enough tension to be deformed plastically along the punch face and consequently, ensures a proper shape of final products by fixing the sheet to the die. Therefore, the optimum design of drawbead is indispensable in obtaining the desired formability. A static-explicit finite element analysis is carried out to provide a perspective tool for designing the drawbead. The finite element formulation is constructed from static equilibrium equation and takes into account the boundary condition that involves a proper contact condition. The deformation behavior of sheet material is formulated by the elastic-plastic constitutive equation. The finite element formulation has been solved based on an existing method that is called the static-explicit method. The main features of the static-explicit method are first that there is no convergence problem. Second, the problem of contact and friction is easily solved by application of very small time interval. During the analysis of drawbead processes, the strain distribution and the drawing force on drawbead can be analyzed. And the effects of bead shape and number of beads on sheet forming processes were investigated. The results of the static explicit analysis of drawbead processes show no convergence problem and comparatively accurate results even though severe high geometric and contact-friction nonlinearity. Moreover, the computational results of a static-explicit finite element analysis can supply very valuable information for designing the drawbead process in which the defects of final sheet product can be removed.

Dynamics model of the float-type wave energy converter considering tension force of the float cable

  • Hadano, Kesayoshi;Lee, Sung-Bum;Moon, Byung-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.217-224
    • /
    • 2014
  • We have developed the novel device that can extract energy from ocean waves utilizing the heaving motion of a floating mass. The major components of the energy converter are: a floater, a counterweight, a cable, a driving pulley, two idler pulleys, a ratchet, and a generator. The device generates power through the tension force in the cable and the weight difference between the floater and the counterweight. When the system is at static free condition, the tension in the cable is equal to the weight of the counterweight which is minimum. Therefore it is desirable to keep the counterweight lighter than the floater. However, experiments show that during the rise of the water level, the torque generated by weight of the counterweight is insufficient to rotate the driving pulley which causes the cable on the floater side to slack. The proposed application of the tension pulley rectifies these problems by preventing the cable from becoming slack when the water level rises. In this paper, the dynamics model is modified to incorporate the dynamics of the tension pulley. This has been achieved by first writing the dynamical equations for the tension pulley and the energy converter separately and combining them later. This paper investigates numerically the effect of the tension pulley on various physical quantities such as the cable tension, the floater displacement, and the floater velocity. Results obtained indicate that this application is successful in suppressing large fluctuations of the cable tension.

Evaluation of Fracture Toughness of Al alloys for Propulsive Engine using Strain Measurement (변형률 측정을 이용한 추진기관용 Al 합금의 파괴인성 평가)

  • 김재훈;김덕회;임동규;박성욱;문순일
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.13-21
    • /
    • 2002
  • The tincture toughness is evaluated by using U(compact tension) and 3PB(three point bending) specimens of AI alloys far propulsive engine. To evaluate the static fracture toughness, strain gage method is used. The static fracture toughness obtained from the strain measurement is compared with the results by ASTM standard and FEM analysis. For the reliable evaluation of fracture toughness, strain gages are attached at various positions.

Feedback Linearization Control of the Looper System in Hot Strip Mills

  • Hwang, I-Cheol;Kim, Seong-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1608-1615
    • /
    • 2003
  • This paper studies on the linearization of a looper system in hot strip mills, that plays an important role in regulating a strip tension or a strip width. Nonlinear dynamic equations of the looper system are analytically linearized by a static feedback linearization algorithm with a compensator. The proposed linear model of the looper is validated by a comparison with a linear model using Taylor's series. It is shown that the linear model by static feedback well describes nonlinearities of the looper system than one using Taylor's series. Furthermore, it is shown from the design of an ILQ controller that the linear model by static feedback is very useful in designing a linear controller of the looper system.

Static and free vibration analysis of shallow sagging inclined cables

  • Li, Zhi-Jiang;Li, Peng;He, Zeng;Cao, Ping
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.145-157
    • /
    • 2013
  • Based on link-model, we conducted a static analysis and computation of a three-span suspended cable structure in the present paper, and obtained the static configuration and tension distribution of the cable. Using the link and beam model based on finite element method, we analyzed the vibration modal of three-span suspended cable structure, and compared with the results obtained from ANSYS using link and beam element. The vibration modals of shallow sagging inclined cables calculated from proposed method agrees well with ANSYS results, which validates the proposed method. As a result, the influence of bend stiffness on in-plane natural frequencies is much greater than that on out-of-plane natural frequencies of inclined cables.

A Study of Static Unstable Behavioral Characteristics of Cable Dome Structures according to the Structural System (구조시스템에 따른 케이블 돔의 정적 불안정거동 특성에 관한 연구)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.131-138
    • /
    • 2004
  • The cable structure is a kind of ductile structural system using the tension cable and compression column as a main element. From mechanical characteristics of the structural material, it is profitable to be subjected to the axial forces than bending moment or shear forces. And we haweto consider the local buckling when it is subjected to compression forces, but tension member can be used until the failure strength. So we can say that the tension member is the most excellent structural member. Cable dome structures are made up of only the tension cable and compression column considering these mechanical efficiency and a kind of structural system. In this system, the compression members are connected by using tension members, not connected directly each other. Also, this system is lightweight and easy to construct. But, the cable dome structural system has a danger of global buckling as external load increases. That is, as the axisymmetric structure is subjected to the axisymmetric load, the unsymmetric deformation mode is happened at some critical point and the capacity of the structure is rapidly lowered by this reason. This phenomenon Is the bifurcation and we have to reflect this in the design process of the large space structures. In this study, We investigated the nonlinear unstable phenomenon of the Geiger, Zetlin and Flower-type cable dome.

  • PDF