• Title/Summary/Keyword: Static stiffness

Search Result 1,048, Processing Time 0.032 seconds

Testing for Identification of Dynamic Properties of Viscoelastic Material Subject to Large Static Deformation (정적 대변형을 받고 있는 점탄성 재료의 동적 물성치 규명 시험)

  • 이완술;이호정;조지현;김진성;윤성기;김광준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.132-143
    • /
    • 2003
  • Viscoelastic components for vibration isolation or shock absorption in automobiles, machines and buildings are often subject to a high level of static deformation. From the dynamic design point of view, it is requisite to predict dynamic complex stiffness of viscoelastic components accurately and efficiently. To this end, a systematic procedure for complex modulus measurement of the viscoelastic material under large static deformation is often required in the industrial fields. In this paper, dynamic test conditions and procedures for the viscoelastic material under small oscillatory load superimposed on large static deformation are discussed. Various standard test methods are investigated in order to select an adequate test methodology. The influence of fixed boundary condition in the compression tests upon complex stiffness are investigated and an effective correction technique is proposed. Then the uniaxial tension and compression tests are performed and its results are compared with analysis results from conventional constitutive models.

Evaluation of Stiffness Matrix of 3-Dimensional Elements for Isotropic and Composite Plates (등방성 및 복합재 플레이트용 16절점 요소의 강성행렬 계산)

  • 윤태혁;김정운;이재복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2640-2652
    • /
    • 1994
  • The stiffness of 6-node isotropic element is stiffer than that of 8-node isotropic element of same configuration. This phenomenon was called 'Relative Stiffness Stiffening Phenomenon'. In this paper, an equation of sampling point modification which correct this phenomenon was derived for the composite plate, as well as an equation for an isotropic plate. The relative stiffness stiffening phenomena of an isotropic plate element could be corrected by modifying Gauss sampling points in the numerical integration of stiffness matrix. This technique could also be successfully applied to the static analyses of composite plate modeled by the 3-dimensional 16-node elements. We predicted theoretical errors of stiffness versus the number of layers that result from the reduction of numerical integration order. These errors coincide very well with the actual errors of stiffness. Therefore, we can choose full integration of reduced integration based upon the permissible error criterion and the number of layers by using the thoretically predicted error.

Application of WAK test to Identify Unstable Concrete Sleeper

  • Ngo, Vu Thanh;Park, Jaehak;Park, Seongbaek;Lim, Yujin
    • International Journal of Railway
    • /
    • v.9 no.2
    • /
    • pp.46-49
    • /
    • 2016
  • In this study a new detection technique based on WAK is introduced that can be used for identifying unstable concrete sleeper installed in ballast by triggering activated wave on the sleeper surface. If a gap exists immediately below the concrete sleeper, static stiffness can be lower than stable case's stiffness. The concrete sleeper is assumed as a single degree of freedom system (SDOF). The static stiffness K can be obtained by iteratively calculated mass (m), stiffness (k) and damping coefficient (c) of SDOF system. Those coefficients are used to specify the ballast condition such as a gap between the sleeper and ballast. Typical test results using a small sleeper model test are summarized and explained for proof of effectiveness of the WAK test for checking unstable condition of the sleeper.

A Theoretical Study on the Dynamic Characteristics of Damping Flexible Coupling(I) (유체감쇠 커플링의 동특성에 관한 이론적 연구(I))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 1994
  • The present works are the theoretical results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. It is established the analysis scheme of the multiple-leaf spring, to obtain the static coefficient of stiffness of the coupling. Also, the dynamic coefficient of stiffness and the damping coefficient of the coupling are indentified through the flow analysis for a induced flow of working fluid by the deflection of multiple-leaf springs. This paper dealt with damping contributions by the friction between each plate of the multiple-leaf spring. In this paper, it is found that the dynamic characteristics of the damping flexible coupling are strongly dependent on the stiffness and the number of the multiple-leaf spring, and also vary with the viscosity of working fluid and the vibration speed of the inner star.

  • PDF

Experimental Evaluation of the Performance of the HSLDS Magnetic Vibration Isolator with Consideration of the Design Parameter (설계 파라미터를 고려한 HSLDS 마그네틱 진동절연체의 실험적 성능평가)

  • Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.352-356
    • /
    • 2011
  • The isolation performance of a linear vibration isolator is limited to the ratio of stiffness to mass it supports. The stiffness of the isolator must be large enough to hold the weight. This results in the deterioration of the isolation performance. Recently, to overcome this fundamental limitation, the HSLDS(high-static-low-dynamic-stiffness) magnetic vibration isolator was introduced and its isolation characteristic was investigated theoretically. In this paper, the isolation performance of the HSLDS magnetic isolator is examined experimentally. Considerable amount of experiments are performed by carefully considering nonlinear characteristics. The experimental results verify the practical usability promisingly and agree with the theoretical studies, i.e. its performance is largely dependent on the key design parameter.

On the Modification of Gauss Integral Point of 6 Node Two Dimensional Isoparametric Element -Linear and Nonlinear Static and Dynamic Bending Analyses- (6절점 2차원 Isoparametric요소의 가우스적분점 수정에 관하여 -선형, 비선형의 정적 및 동적 굽힘해석-)

  • 김정운;정래훈;권영두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3007-3019
    • /
    • 1993
  • For the same configuration, the stiffness of 6-node two dimensional isoparametric is stiffer than that of 8-node two dimensional isoparametric element. This phenomenon may be called 'Relative Stiffness Stiffening Phenomenon.' In this paper, the relative stiffness stiffening phenomenon was studied, and could be corrected by modifying the position of Gauss integral points used in the numerical integration of the stiffness matrix. For the same deformation (bending) energy of 6-node and 8-node two dimensional isoparametric elements, Gauss integral points of 6-node element have to move closer, in comparison with those of 8-node element, in the case of numerical integration along the thickness direction.

A Study on the Precision Milling Machine Design for Micro Machining (미소가공을 위한 초정밀 밀링머신 설계에 관한 연구)

  • Hwang, Joon;Ji, Kwon-Gu;Chung, Eui-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the results of miniaturized micro milling machine tool development for micro precision machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Design optimization has been performed to optimize the design variables of micro machine tool to minimize the volume, weight and deformation of machine tool structure and to maximize the stiffness in terms of static, dynamic, and thermal characteristics. This study presents the assessment of the technology incentive for the minimization of machine tool in the quantitative context of static, dynamic stiffness, thermal resistance and thus the accuracy implications. This study can also be provided a basic knowledge for further research of micro factory development.

  • PDF

Topology Optimization of a Vehicle's Hood Considering Static Stiffness (자동차 후드의 정강성을 고려한 위상 최적화)

  • Han, Seog-Young;Choi, Sang-Hyuk;Park, Jae-Yong;Hwang, Joon-Seong;Kim, Min-Sue
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.69-74
    • /
    • 2007
  • Topology optimization of the inner reinforcement for a vehicle's hood has been performed by evolutionary structural optimization(ESO) using a smoothing scheme. The purpose of this study is to obtain optimal topology of the inner reinforcement for a vehicle's hood considering the static stiffness of bending and torsion simultaneously. To do this, the multiobjective optimization technique was implemented. Optimal topologies were obtained by the ESO method. From several combinations of weighting factors, a Pareto-optimal solution was obtained. Also, a smoothing scheme was implemented to suppress the checkerboard pattern in the procedure of topology optimization. It is concluded that ESO method with a smoothing scheme is effectively applied to topology optimization of the inner reinforcement of a vehicle's hood considering the static stiffness of bending and torsion.

The Process Development of Automotive Light-Weighting Door using High Strength Steel (고장력강을 이용한 자동차 경량 도어 개발 프로세스)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.55-62
    • /
    • 2017
  • This paper proposes the process to develop a light-weighting automotive door assembly using high strength steel with low cost penalty. In recent years, the automotive industry is making an effort to reduce the vehicle weight. In this study, inner panels for automotive front door using thinner sheets and quenchable boron steel were designed to reduce the weight of conventional one. In order to evaluate the stiffness properties for the proposed door design, the several static tests were conducted using the finite element method. Based on the simulation results, geometry modifications of the inner panels were taken into account in terms of thickness changes and cost saving. Furthermore, a prototype based on the proposed design has been made, and then static stiffness test carried out. From the results, the proposed door is proved compatible and weight reduction of 11.8% was achieved. It could be a reference process for automotive industry to develop the similar products.

Simulation of Static Characteristics of Railway Vehicle's Airspring (철도차량용 공기 스프링의 정적 특성 시뮬레이션)

  • Heo, Sin;Gu, Jeong-Seo;U, Chang-Su;Kim, Yu-Il
    • 연구논문집
    • /
    • s.26
    • /
    • pp.15-24
    • /
    • 1996
  • In this study, we performed the static analysis of a cord-reinforced rubber airspring and generated the three-dimensional half-symmetry model which use the finite-strain shell elements to model the airbag. the three-dimensional hydrostatic fluid elements to model the air-filled cavity, and the rebar elements to model the multi-ply nylon reinforcement of airbag. In addition, a three-dimensional rigid surface is used to define the contact between the airspring and metal bead. The air inside the airspring cavity has been modeled as a compressible fluid satisfying the ideal gas law. The conclusions of this study are as follows. 1) In the pressurization step of analysis, we could predict the change of vertical reaction force, cavity volume and pressure within the airspring. 2) In the second step of analyzing vertical static stiffness, the increase of the vertical load increases the vertical stiffness. 3) In case of changing the angle of nylon cord, the increase the angle of nylon cord increases the vertical stiffness.

  • PDF