• Title/Summary/Keyword: Static pressure distribution

Search Result 214, Processing Time 0.022 seconds

Wave Control by Bottom-Mounted and Fluid-Filled Flexible Membrane Structure (유체가 채워진 착저신 유연막 구조물에 의한 파랑제어)

  • 조일형;강창익
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.139-148
    • /
    • 2000
  • In this paper, the interaction of oblique incident waves with a bottom-mounted and fluid-filled flexible membrane structure is investigated in the frame of linear hydro-elastic theory. The static shape of a membrane structure containing the fluid of a specific density is initially unknown and must be calculated before the hydrodynamic analysis. To solve hydrodynamic problem, the fluid domain is divided into the inner and outer region. The inner solution based on discrete membrane dynamic model and simple-source distribution over the entire fluid boundaries is matched to the outer solution ba~ed on an eigenfunction expansion method. The numerical results were compared to a series of Ohyama's experimental results. The measured reflection and tran¬smission coefficients reasonably follow the trend of predicted values. Using the computer program developed, the performance of a bottom-mounted and fluid-filled flexible membrane strocture is tested with various system parameters (membrane shape, internal pressure, density ratio) and wave characteristics (wave frequencies, incident wave angle). It is found that a bottom-mounted and fluid-filled flexible membrane structure can be an effel;tive wave barrier if properly designed.

  • PDF

ARC Discharge Sound Source in Underwater (수중 아-크 방전음원에 관한 연구)

  • Chang, Jea-Hwan;Chang, Jee-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 1985
  • In general the impulse sound sources of underwater generated by electric arc discharge had used static energy of the charged capacitors. The author proposed an underwater arc discharge sound source using secondary voltage of high voltage transformer without capacitors. The arc discharge device was composed of a high voltage transformer and a switching system. The impulse current in the primary turn of the high voltage transformer is controlled by the switching system and inductive current of the secondary turn in the high voltage transformer is used in making impulsive arc discharge. A series of experiment have been carried out to observe the acoustic characteristics of the impulse sound source generated by the arc discharge. The results obtained were as follows: 1. Secondary current at the time of arc discharge keeps after ohm's law in the beginning and the maximum current flows out as soon as arc discharge breaks out. 2. A time difference between a start of applied current and a generation of arc discharge sound is the 3msec and it is generated arc sound when breaking down electric insulation at maximum voltage. 3. The sharper the end of electrodes and the higher the secondary voltage, the higher the sound pressure level. 4. Arc discharge sound was generated even at the distance of 100cm between electrodes and was stably reproductive at the gap of 1cm to 100cm. 5. Electric arc discharge sound wave is a shock wave of pulse-width of 0.15msec and spectral distribution of it is plenty of low frequency components less than 10 KHz.

  • PDF

Design Study of Engine Inlet Duct for Measurement Improvement of the Flow Properties on AIP (AIP면 유동측정 정확도 향상을 위한 가스터빈엔진 입구덕트 설계 연구)

  • Im, Ju Hyun;Kim, Sung Don;Kim, Yong Ryeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.49-55
    • /
    • 2017
  • In this study, gas turbine engine inlet duct was designed to satisfy uniform flow at aerodynamic interface plane (AIP). Haack-series was selected as nose cone profile and duct outer radius($r_o$) was designed to satisfy to match with area change rate between the nose cone and outer duct wall by the 1-D sizing. The design object of the inlet duct wall profile which has the gradual area change rate was uniform Mach number in the core flow region and minimum boundary later thickness at the both inner nose wall and outer duct wall. The flow characteristics inside the inlet duct was evaluated using CFD. The static pressure distribution at the AIP showed uniform pattern within 0.16%. Based on Mach number profile, the boundary layer thickness was 2% of channel height. Kiel temperature rake location was decided less than 100 mm in front of nose cone where the Mach number is less than 0.1 in order to maximize the temperature probe recovery rate.

FINITE ELEMENT ANALYSIS OF MAXILLARY CENTRAL INCISORS RESTORED WITH VARIOUS POST-AND-CORE APPLICATIONS (여러가지 post-and-core로 수복된 상악 중절치의 유한요소법적 연구)

  • Seo, Min-Seock;Shon, Won-Jun;Lee, Woo-Cheol;Yoo, Hyun-Mi;Cho, Byeong-Hoon;Baek, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.324-332
    • /
    • 2009
  • The purpose of this study was to investigate the effect of rigidity of post core systems on stress distribution by the theoretical technique, finite element stress-analysis method. Three-dimensional finite element models simulating an endodontically treated maxillary central incisor restored with a zirconia ceramic crown were prepared and 1.5 mm ferrule height was provided. Each model contained cortical bone, trabecular bone, periodontal ligament, 4 mm apical root canal filling, and post-and-core. Six combinations of three parallel type post (zirconia ceramic, glass fiber, and stainless steel) and two core (Paracore and Tetric ceram) materials were evaluated, respectively. A 50 N static occlusal load was applied to the palatal surface of the crown with a $60^{\circ}$angle to the long axis of the tooth. The differences in stress transfer characteristics of the models were analyzed. von Mises stresses were chosen for presentation of results and maximum displacement and hydrostatic pressure were also calculated. An increase of the elastic modulus of the post material increased the stress, but shifted the maximum stress location from the dentin surface to the post material. Buccal side of cervical region (junction of core and crown) of the glass fiber post restored tooth was subjected to the highest stress concentration. Maximum von Mises stress in the remaining radicular tooth structure for low elastic modulus resin core (29.21 MPa) was slightly higher than that for high elastic modulus resin core (29.14 MPa) in case of glass fiber post. Maximum displacement of glass fiber post restored tooth was higher than that of zirconia ceramic or stainless steel post restored tooth.