• Title/Summary/Keyword: Static modulus of elasticity

Search Result 99, Processing Time 0.025 seconds

Effect of Green Tea and Saw Dust Contents on Static Bending Strength Performance of Hybrid Boards Composed of Wood Fiber, Saw Dust and Green Tea (목재섬유, 톱밥 및 녹차 이종복합보드의 정적 휨 강도성능에 미치는 녹차 및 톱밥 배합비율의 영향)

  • Park, Han-Min;Lee, Soo-Kyeong;Seok, Ji-Hoon;Choi, Nam-Kyung;Kwon, Chang-Bae;Heo, Hwang-Sun;Kim, Jong-Chul
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.41-46
    • /
    • 2011
  • In this study, in addition to the green tea-wood fiber hybrid composite boards of previous researches, to make effective use of saw dust of domestic cypress tree with functionalities and application as interior materials, eco-friendly hybrid composite boards were manufactured from wood fiber, green tea and saw dust of cypress tree. We investigated the effect of the component ratio of saw dust and green tea on static bending strength performances. Static bending MOE (modulus of elasticity) was within 0.956~1.18GPa, and showed the highest value in wood fiber : green tea : saw dust = 50 : 40 : 10 of the component ratio, and had the lowest value in 50 : 30 : 20 of component ratio. These values were 2.0~3.1times lower than those of green tea-wood fiber hybrid composite boards reported in the previous researches. The bending MOR (modulus of rupture) showed 8.99~11.5MPa, the change of the bending MOR with component ratio of the factors was the same as that of bending MOE. These values had 1.9~3.5 times lower value than those of green tea-wood fiber hybrid composite boards, and showed the slightly lower values than the MOR of particle boards (PB) and medium density fiberboards (MDF) prescribed in Korean Industrial Standard. Therefore, it is considered that these hybrid composite boards need to improve strength performances by component ratio change, hybrid composite with other materials and adhesive change etc. in order to industrialize the hybrid composite boards.

Effect of Green Tea Content on Static Bending Strength Performance of Hybrid Boards Composed of Green Tea and Wood Fibers (녹차-목재섬유복합보드의 정적 휨 강도성능에 미치는 녹차배합비율의 영향)

  • Park, Han-Min;Kang, Dong-Hyun;Lim, Na-Rea;Lee, Soo-Kyeong;Jung, Kang-Won;Kim, Jong-Chul;Cho, Kyeong-Hwan
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea and wood fibers for application as interior materials with various functionalities of green tea and strong strength properties of wood fibers. In this relation, the effect of green tea content on the static bending strength performances of these green tea and wood fibers composite boards were investigated. Static bending strengths of hybrid composite boards were lower than those of control boards and decreased with the increase of green tea content. Also, the strength performances appeared to be somewhat different by resin type used for board manufacture. The hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, which has higher molar ratio of formaldehyde to urea than that of $E_0$ grade one, were 1.08~1.53 times higher in bending modulus of elasticity (MOE) and 1.19~1.82 higher in modulus of rupture (MOR) than that manufactured from $E_0$ grade. And, the differences of MOE and MOR between hybrid composite boards manufactured from $E_0$ grade and $E_0$ grade urea resin adhesive increased with the increase of green tea content. In the case of hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, the MOR was within 0.94~1.03 times the commercial medium density fiberboard. Thus, it was thought that eco-friendly hybrid composite boards with various functionalities and strong strength performances could be manufactured from green tea and wood fibers.

An Experimental study on the Engineering Properties of Concrete with Rice-Husk Ash (왕겨재를 혼입(混入)한 콘크리트의 공학적(工學的) 특성(特性)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Sung, Chan Yong;Yoo, Byong In;Kim, Kyung Tae;Jung, Hyun Jung;Kim, Young Ik
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.207-217
    • /
    • 1997
  • This study was performed to evaluate the engineering properties of rice-husk ash concrete using normal portland cement, natural aggregates and rice-husk ash. The following conclusions were drawn; 1. The unit weight was in the range of $2,216{\sim}2,325kgf/m^3$, the weights of those concrete were decreased 1~6% than that of the normal cement concrete, respectively. 2. The highest strength was achieved by 10% rice-husk ash filled rice-husk ash concrete, it was increased 8% by compressive strength, 17% by tensile strength and 18% by bending strength than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 3,252~4,016 m/s, which was showed about the same compared to that of the normal cement concrete. The highest ultrasonic pulse velocity was showed by 10% rice-husk ash filled rice-husk ash concrete. 4. The dynamic modulus of elasticity was in the range of $242{\times}10^3{\sim}306{\times}10^3kgf/cm^2$, which was showed about the same compared to that of the normal cement concrete. The highest dynamic modulus was showed by 10% rice-husk ash filled rice-husk ash concrete. 5. The static modulus of elasticity was in the range of $185{\times}10^3{\sim}275{\times}10^3kgf/cm^2$, which was showed about the same compared to that of the normal cement concrete. The poisson's number of rice-husk ash concrete was less than that of the normal cement concrete. The dynamic modulus was increased approximately 11~30% than that of the static modulus. 6. The durability was increased with increase of the content of rice-husk ash. The durability was increased 1.3 times by 10% rice-husk ash, 1.6times by 20% rice-husk ash filled concrete than that of the normal cement concrete. respectively.

  • PDF

Flexural Cnaracteristics of Polymer Concrete Sandwich Constructions (폴리머 콘크리트 샌드위치 구조재의 휨특성)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.125-134
    • /
    • 1989
  • This study was conducted to investigate the flexural behaviour of sandwich constructions with cement concrete core and polymer concrete facings. Six different cross-sectional shapes using epoxy based polymer concrete facings were investigated. Some of the results from the static tests are given including the load-deflection responses, load-strain relationships, ultimate moment, and mode of failure. From the. results the following conclusions can be made. 1. The various strengths of polymer concrete were very high compared to the strengths for portland cement concrete, while modulus of elasticity assumed an aspect of contrast. 2. The thickness of core and facing exerted a great influence on the deflection and ultimate strenght of polymer concrete sandwich constructions. 3. The variation shape of deflection and strain depend on loading were a very close approximation to the straight line. The ultimate strain of polymer concrete at the end of tensile side were ranged from 625x10-6 to 766x10-6 and these values increased in proportion to the decrease of thickness of core and facings. 4. The ultimate moments of polymer sandwich constructions were 3 to 4 times that of cement concrete constructions which was transformed same section. It should he noted that polymer concrete have an effect on the reinforcement of weak constructions. 5. Further tests are neede to investigate the shear strain of constructions, and thermal expansion, shrinkage and creep of cement and polymer concrete which were composite materials of sandwich constructions.

  • PDF

Mechanical properties and damage constitutive model of self-compacting rubberized concrete

  • Ke, Xiaojun;Xiang, Wannian;Ye, Chunying
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.257-267
    • /
    • 2022
  • Two different types of rubber aggregates (40 mesh rubber powder and 1-4 mm rubber particles respectively) were devised to substitute fine aggregates at 10%, 15%, 20% and 30% by volume in self-compacting concrete to investigate their basic mechanical properties. The results show that with the increase of rubber content, the reduction of compressive strength, splitting tensile strength and static modulus of elasticity gradually increase, and energy dissipation performance gradually increase. The rubber addition significantly reduces brittleness and decelerates damaged process. Whilst, the effect of rubber particles is greater when they are finer. Considering the mechanical properties, the optimal rubber content is 10%. It is recommended that the rubber volume content in rubberized concrete (RC) should not be higher than 20%. In addition, a constitutive model under uniaxial compression was proposed basing on the strain equivalent principle of Lemaitre and the damage theory, which was in good agreement with the test curves.

Time-dependent analysis of slender, tapered reinforced concrete columns

  • de Macedo Wahrhaftig, Alexandre
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.229-247
    • /
    • 2020
  • This study analyzed stresses in concrete and its reinforcement, computing the additional loading transferred by concrete creep. The loading varied from zero, structure exclusively under its self-weight, up to the critical buckling load. The studied structure was a real, tapered, reinforced concrete pole. As concrete is a composite material, homogenizing techniques were used in the calculations. Due to the static indetermination for determining the normal forces acting on concrete and reinforcement, equations that considered the balance of forces and compatibility of displacement on cross-sections were employed. In the mathematical solution used to define the critical buckling load, all the elements of the structural dynamics present in the system were considered, including the column self-weight. The structural imperfections were linearized using the geometric stiffness, the proprieties of the concrete were considered according to the guidelines of the American Concrete Institute (ACI 209R), and the ground was modeled as a set of distributed springs along the foundation length. Critical buckling loads were computed at different time intervals after the structure was loaded. Finite element method results were also obtained for comparison. For an interval of 5000 days, the modulus of elasticity and critical buckling load reduced by 36% and 27%, respectively, compared to an interval of zero days. During this time interval, stress on the reinforcement steel reached within 5% of the steel yield strength. The computed strains in that interval stayed below the normative limit.

Mechanical Properties and Neutron Shielding Rate of Concrete with Borosilicate-Glasses and Amorphous Boron Steel Fiber (붕규산유리 및 비정질 붕소강 섬유를 혼입한 콘크리트의 역학적 성능 및 중성자 차폐성능 평가)

  • Lee, Jun-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.269-275
    • /
    • 2016
  • In this study, the mechanical properties and the neutron shielding rate of concrete with the borosilicate glass and the amorphous boron steel fiber were investigated. The measures of this investigation includes air contents, slump loss, compressive strength, static modulus of elasticity, compressive toughness, flexural strength, flexure toughness and neutron shielding rate. As a result, the neutron shielding rate of the concrete with borosilicate glasses increased even though the compressive strength and flexural strength decreased in comparison with that of plain concrete. Also, the mechanical toughness and the neutron shielding rate of the concrete with amorphous boron steel fiber increased in comparison with that of plain concrete.

Concrete Test for Creep and Shrinkage Properties on High Strength Concrete (고강도 콘크리트 크리프 및 건조수축 특성을 위한 재료실험)

  • Moon, Hyung-Jae;Cha, Han-Il;Seok, Won-Kyun;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.857-860
    • /
    • 2008
  • This study shows systematic procedures for investigating creep and shrinkage properties of 50, 60, 70 MPa concrete mixes, which were developed by Lotte E&C R&D Ins. for Lotte Super Tower Jamsil. The concrete test was performed both local and foreign laboratory, S-Lab. and CTL Group respectively. The former have done for total five days. The procedures included the followings, specimen fabrication, mold removal, specimen marking, water bath curing, packaging, and shipment. The latter has been doing by CTL within PCA(Portland Cement Association). They are testing on static and dynamic modulus of elasticity, compressive strength, creep & shrinkage, splitting tensile strength. In the case of creep and shrinkage, the test will be doing for 18 months according to each loading age.

  • PDF

Stress analysis of a two-phase composite having a negative-stiffness inclusion in two dimensions

  • Wang, Yun-Che;Ko, Chi-Ching
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.321-332
    • /
    • 2009
  • Recent development in composites containing phase-transforming particles, such as vanadium dioxide or barium titanate, reveals the overall stiffness and viscoelastic damping of the composites may be unbounded (Lakes et al. 2001, Jaglinski et al. 2007). Negative stiffness is induced from phase transformation predicted by the Landau phase transformation theory. Although this unbounded phenomenon is theoretically supported with the composite homogenization theory, detailed stress analyses of the composites are still lacking. In this work, we analyze the stress distribution of the Hashin-Shtrikman (HS) composite and its two-dimensional variant, namely a circular inclusion in a square plate, under the assumption that the Young's modulus of the inclusion is negative. Assumption of negative stiffness is a priori in the present analysis. For stress analysis, a closed form solution for the HS model and finite element solutions for the 2D composite are presented. A static loading condition is adopted to estimate the effective modulus of the composites by the ratio of stress to average strain on the loading edges. It is found that the interfacial stresses between the circular inclusion and matrix increase dramatically when the negative stiffness is so tuned that overall stiffness is unbounded. Furthermore, it is found that stress distributions in the inclusion are not uniform, contrary to Eshelby's theorem, which states, for two-phase, infinite composites, the inclusion's stress distribution is uniform when the shape of the inclusion has higher symmetry than an ellipse. The stability of the composites is discussed from the viewpoint of deterioration of perfect interface conditions due to excessive interfacial stresses.

Effects of Heating Temperature and Time on the Mechanical Properties of Heat-Treated Woods

  • Won, Kyung-Rok;Hong, Nam-Euy;Park, Han-Min;Moon, Sun-Ok;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.168-176
    • /
    • 2015
  • This study was performed to investigate the effects of heat treatment the on mechanical properties of two species of wood under different heating conditions including at $180^{\circ}C$ for 12 h and 24 h, and at $210^{\circ}C$ for 3 h and 6 h. Two species of wood, Pinus densiflora and Larix kaempferi, were exposed to different heat treatments to assess the effects on the volume change, bending properties in static and dynamic mode and compressive strength. The results showed heat treatment caused significant changes in mechanical properties such as the static and dynamic moduli of elasticity ($MOE_d$ and $MOE_s$), and the modulus of rupture (MOR). The volume of the wood after heat treatment decreased as the heating temperature and time were increased. The bending strength performance of the wood after heat treatment decreased as the heating temperature and time were increased. The effect of heat treatment at a high temperature on the bending MOR was greater in both species than that for a long time. However, the compressive strengths of all the heat-treated samples were higher than the control sample. Furthermore, highly significant correlations between $MOE_d$ and MOR, and $MOE_s$ and MOR were found for all heating conditions.