• Title/Summary/Keyword: Static induction transistor

Search Result 16, Processing Time 0.019 seconds

Organic Light Emitting Transistors for Flexible Displays

  • Kudo, Kazuhiro;Endoh, Hiroyuki;Watanabe, Yasuyuki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.137-140
    • /
    • 2005
  • Organic light emitting transistors (OLET) which are vertically combined with the organic static induction transistor (OSIT) and organic light emitting diode (OLED) are fabricated and the device characteristics are investigated. High luminance modulations by relatively low gate voltages are obtained. In order to realize the flexible electronic circuits and displays, we have fabricated OSIT on plastic substrates. The OSIT fabricated on plastic substrate show almost same characteristics comparing with those of nonflexible OSIT on glass substrate. The OLET described here is a suitable element for flexible sheet displays.

  • PDF

A Study on the Improvement of Forward Blocking Characteristics in the Static Induction Transistor (Static Induction Transistor의 순방향 블로킹 특성 개선에 관한 연구)

  • Kim, Je-Yoon;Jung, Min-Chul;Yoon, Jee-Young;Kim, Sang-Sik;Sung, Man-Young;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.292-295
    • /
    • 2004
  • The SIT was introduced by Nishizawa. in 1972. When compared with high-voltage, power bipolar junction transistors, SITs have several advantages as power switching devices. They have a higher input impedance than do bipolar transistors and a negative temperature coefficient for the drain current that prevents thermal runaway, thus allowing the coupling of many devices in parallel to increase the current handling capability. Furthermore, the SIT is majority carrier device with a higher inherent switching speed because of the absence of minority carrier recombination, which limits the speed of bipolar transistors. This also eliminates the stringent lifetime control requirements that are essential during the fabrication of high-speed bipolar transistors. This results in a much larger safe operating area(SOA) in comparison to bipolar transistors. In this paper, vertical SIT structures are proposed to improve their electrical characteristics including the blocking voltage. Besides, the two dimensional numerical simulations were carried out using ISE-TCAD to verify the validity of the device and examine the electrical characteristics. A trench gate region oxide power SIT device is proposed to improve forward blocking characteristics. The proposed devices have superior electrical characteristics when compared to conventional device. Consequently, the fabrication of trench oxide power SIT with superior stability and electrical characteristics is simplified.

  • PDF

Parallel Operation of a Pair of SITs in order to raise the High Frequency and Power Half-Bridge Inverter (고주파 및 고전력 인버터 적용을 위한 Half-Bridge SIT의 병렬운전 특성고찰)

  • Choi, Sang-Won;Kim, Jin-Pyo;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2234-2236
    • /
    • 1997
  • The SIT, a Static Induction Transistor, is a semiconductor switch that is also called the power junction field-effect transistor (power JFET). Its characteristics are similar to a MOSFET except that its power level is higher and its maximum frequency of operation is lower. The normal method to protect against internal circuit transients of the form of di/dt or dv/dt is the use of snubber circuits. However, the limits of di/dt and dv/dt are high enough for the SIT that it is possible to operate without snubber circuits. SITs can be connected in parallel in order to cope with higher load currents that the value of an individual device rating. The purpose of this study is to investigate the parallel operation of SITs. In this experiment, we used a half-bridge inverter, the output of inverter is up to almost 1MHz and 2kW. Experimental results show that the operation of parallel connected SITs are facilitated individually good current sharing. The reason is the positive temperature coefficient of resistance of the SIT.

  • PDF

An Optimization of 600V GaN Power SIT (600V급 GaN Power SIT 설계 최적화에 관한 연구)

  • Oh, Ju-Hyun;Yang, Sung-Min;Jung, Eun-Sik;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.5-5
    • /
    • 2010
  • Gallium Nitride(GaN)는 LED, Laser 등에 사용되는 광학적 특성뿐만 아니라 Wide Bandgap의 전기적 특성 또한 주목받고 있다. 본 논문은 600V급 GaN(Gallium Nitride) Power SIT(Static Induction Transistor)에 대해서 Design Parameter 변환에 따른 전기적 (Breakdown Voltgage, On-state Voltage Drop)특성과 열적 (Lattice Temperature Distribution)특성변화를 분석하여 소자가 갖는 구조적 손실을 최소화하였다. 또한, 기존 실리콘 기반 전력소자와 특성 비교를 통하여 GaN Power SIT의 우수성을 증명하였다. GaN Power SIT 소자 설계 및 최적화를 위해서 Silvaco사의 소자 시뮬레이터인 ATLAS를 사용하였다. 실험 결과 수 ${\mu}m$의 소자 두께만으로도 실리콘 전력소자에 비해 더 뛰어난 열 특성과 더 적은 전력소모를 갖는 600V급 GaN Power SIT 소자를 구현할 수 있었다.

  • PDF

Study on Design and Fabrication of Power SIT (전력 SIT 소자의 설계 및 제작에 관한 연구)

  • Kang, Ey-Goo;Park, Sang-Won;Jung, Min-Cheol;Yoo, Woo-Jang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.196-197
    • /
    • 2006
  • In this paper, two types of vertical SIT(Static Induction Transistor) structures are proposed to improve their electrical characteristics including the blocking voltage. Besides, the two dimensional numerical simulations were carried out using ISE-TCAD to verify the validity of the device and examine the electrical characteristics. First, a trench gate region oxide power SIT device is proposed to improve forward blocking characteristics. Second, a trench gate-source region power SIT device is proposed to obtain more higher forward blocking voltage and forward blocking characteristics at the same size. The two proposed devices have superior electrical characteristics when compared to conventional device. In the proposed trench gate oxide power SIT, the forward blocking voltage is considerably improved by using the vertical trench oxide and the forward blocking voltage is 1.5 times better than that of the conventional vertical power SIT. In the proposed trench gate-source oxide power SIT, it has considerable improvement in forward blocking characteristics which shows 1500V forward blocking voltage at -10V of the gate voltage. Consequently, the proposed trench oxide power SIT has the superior stability and electrical characteristics than the conventional power SIT.

  • PDF

Analysis on the Noise Factors of Static Induction Photo-Transistor (SIPT) (1) - The SIPT's Equivalent Circuits for the Analysis on the Noise Factors - (정전유도(靜電誘導) 포토 트랜지스터의 잡음(雜音) 원인(原因) 분석(分析) (1) - 잡음(雜音) 원인(原因) 분석(分析)을 위한 SIPT 등가회로(等價回路) -)

  • Kim, Jong-Hwa
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.29-40
    • /
    • 1995
  • In this paper, the noise equivalent cicuits that is necessary to the formulation of D.C. and noise characteristics, residual component and input capacitance so as to analyze on the noise factors of the SIT is proposed. The simplest noise equivalent circuit is the model representing the mechanism of the SIT and the measured values in this model were found as small as the values of the shot-noise. In the source resistance inserted equivalent circuit is conformed that the shot-noise will be reduced by the negative-feedback effect of the source resistance. In oder to analyze the correct noise reduction factor, I proposed the equivalent circuit which the formulas of the source and drain resistance was induced. In the experiment which affirm the equivalent circuits, the influence of the signal source resistance and output load resistance on the residual component is small and the residual component can be expressed by the equivalent input noise resistance. Moreover, the input capacitance is 13.6 pF when the load resistance is $0{\Omega}$ and the capacitance which does not concern with the SIT operation directly, that is, gate wire etc, is 10pF or so.

  • PDF