• Title/Summary/Keyword: Static environment

Search Result 828, Processing Time 0.027 seconds

Fracture properties and tensile strength of three typical sandstone materials under static and impact loads

  • Zhou, Lei;Niu, Caoyuan;Zhu, Zheming;Ying, Peng;Dong, Yuqing;Deng, Shuai
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.467-480
    • /
    • 2020
  • The failure behavior and tensile strength of sandstone materials under different strain rates are greatly different, especially under static loads and impact loads. In order to clearly investigate the failure mechanism of sandstone materials under static and impact loads, a series of Brazilian disc samples were used by employing green sandstone, red sandstone and black sandstone to carry out static and impact loading splitting tensile tests, and the failure properties subjected to two different loading conditions were analyzed and discussed. Subsequently, the failure behavior of sandstone materials also were simulated by finite element code. The good agreement between simulation results and experimental results can obtain the following significantly conclusions: (1) The relationship of the tensile strength among sandstone materials is that green sandstone < red sandstone < black sandstone, and the variation of the tensile sensitivity of sandstone materials is that green sandstone > red sandstone > black sandstone; (2) The mainly cause for the difference of dynamic tensile strength of sandstone materials is that the strength of crystal particles in sandstone material, and the tensile strength of sandstone is proportional to the fractal dimension; (3) The dynamic failure behavior of sandstone is greatly different from that of static failure behavior, and the dynamic tensile failure rate in dynamic failure behavior is about 54.92%.

The Effect of Static Balance on Colors and Music Tempo Stimulation for Normal Children (색과 음악 빠르기 자극이 정상 아동의 정적 균형에 미치는 영향)

  • Yu, Byong-Kyu;Kim, Kyung;Hwang, Jae-Su
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2005
  • Objective : The purpose of this study was to investigate the effect of sensory stimulation for static balance on normal children. Sensory input was consisted of colors, and music tempo stimulation. Methods : Participants were consisted of 20 normal kindergarten children ranging in age from six to seven years. The static balance was tested by a BPM(Balance Performance Monitor). In this study one-way ANOVA was used and the statistical significance level of results was determined at 0.05. Results : 1. According to color stimulation, there was no significant difference in static balance among red, yellow, green(p>0.05). 2. According to music tempo stimulation, there was no significant difference in static balance, among the high music tempo and low music tempo children in a general environment(p>0.05). 3. However, both green color and low music tempo stimulation have a little effect on static balance on normal children. Conclusion : These results indicate the possibility that the application method of green color and low music tempo stimulation may help in the improvement of static balance for the disabled children. This study will be used as the foundational data of therapeutic environment for the disabled children.

  • PDF

Study on failure behaviors of mixed-mode cracks under static and dynamic loads

  • Zhou, Lei;Chen, Jianxing;Zhou, Changlin;Zhu, Zheming;Dong, Yuqing;Wang, Hanbing
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.567-582
    • /
    • 2022
  • In the present study, a series of physical experiments and numerical simulations were conducted to investigate the effects of mode I and mixed-mode I/II cracks on the fracture modes and stability of roadway tunnel models. The experiments and simulations incorporated different inclination angle flaws under both static and dynamic loads. The quasi-static and dynamic testing were conducted by using an electro-hydraulic servo control device and drop weight impact system (DWIS), and the failure process was simulated by using rock failure process analysis (RFPA) and AUTODYN software. The stress intensity factor was also calculated to evaluate the stability of the flawed roadway tunnel models by using ABAQUS software. According to comparisons between the test and numerical results, it is observed that for flawed roadways with a single radical crack and inclination angle of 45°, the static and dynamic stability are the lowest relative to other angles of fractured rock masses. For mixed-mode I/II cracks in flawed roadway tunnel models under dynamic loading, a wing crack is produced and the pre-existing cracks increase the stress concentration factor in the right part of the specimen, but this factor will not be larger than the maximum principal stress region in the roadway tunnel models. Additionally, damage to the sidewalls will be involved in the flawed roadway tunnel models under static loads.

An Integrated Model of Static and Dynamic Measurement for Seat Discomfort

  • Daruis, Dian Darina Indah;Deros, Baba Md;Nor, Mohd Jailani Mohd;Hosseini, Mohammad
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • A driver interacts directly with the car seat at all times. There are ergonomic characteristics that have to be followed to produce comfortable seats. However, most of previous researches focused on either static or dynamic condition only. In addition, research on car seat development is critically lacking although Malaysia herself manufactures its own car. Hence, this paper integrates objective measurements and subjective evaluation to predict seat discomfort. The objective measurements consider both static and dynamic conditions. Steven's psychophysics power law has been used in which after expansion; ${\psi}\;=\;a+b{\varphi}_s^{\alpha}+c{\varphi}_v^{\beta}$ where ${\psi}$ is discomfort sensation, ${\varphi}_s^{\alpha}$ is static modality with exponent ${\alpha}$ and ${\varphi}_v^{\beta}$ is dynamic modality with exponent ${\beta}$. The subjects in this study were local and the cars used were Malaysian made compact car. Static objective measurement was the seat pressure distribution measurement. The experiment was carried out on the driver's seat in a real car with the engine turned off. Meanwhile, the dynamic objective measurement was carried out in a moving car on real roads. During pressure distribution and vibration transmissibility experiments, subjects were requested to evaluate their discomfort levels using vehicle seat discomfort survey questionnaire together with body map diagram. From subjective evaluations, seat pressure and vibration dose values exponent for static modality ${\alpha}$ = 1.51 and exponent for dynamic modality ${\beta}$ = 1.24 were produced. The curves produced from the $E_{q.s}$ showed better $R_{-sq}$ values (99%) when both static and dynamic modalities were considered together as compared to Eq. with single modality only (static or dynamic only R-Sq = 95%). In conclusion, car seat discomfort prediction gives better result when seat development considered both static and dynamic modalities; and using ergonomic approach.

A study for semi-static quadruped walking robot using wave gait (물결걸음새를 이용한 준정적 4족 보행로봇에 관한 연구)

  • 최기훈;김태형;유재명;김영탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.551-554
    • /
    • 2001
  • A necessity of remote control robots or various searching robots etc. that accomplish works given instead of human under long distance and extreme environment such as volcano, universe, deep-sea exploration and nuclear power plant etc. is increasing, and so the development and the research regarding these mobile robots are actively progressing. The wheel mobile robot or the track mobile robot have a sufficient energy efficiency under this en, but also have a lot of limits to accomplish works given which are caused from the restriction of mobile ability. Therefore, recently many researches for the walking robot with superior mobility and energy efficiency on the terrain, which is uneven or where obstacles, inclination and stairways exist, have been doing. The research for these walking robots is separated into fields of mechanism and control system, gait research, circumference environment and system condition recognition etc. greatly. It is a research field that the gait research among these is the centralist in actual implementation of walking robot unlike different mobile robots. A research field for gait of walking robot is classified into two parts according to the nature of the stability and the walking speed, static gait or dynamic gait. While the speed of a static gait is lower than that of a dynamic gait, a static gait which moves the robot to maintain a static stability guarantees a superior stability relatively. A dynamic gait, which make the robot walk controlling the instability caused by the gravity during the two leg supporting period and so maintaining the stability of the robot body spontaneously, is suitable for high speed walking but has a relatively low stability and a difficulty in implementation compared with a static gait. The quadruped walking robot has a strong point that can embody these gaits together. In this research, we will develope an autonomous quadruped robot with an asaptibility to the environment by selectry appropriate gait, element such as duty factor, stride, trajectory, etc.

  • PDF

Analysis of Bearing Capacity and Safety Factor of Dynamic Load Test of Prebored and Precast Steel Pile (현장재하시험을 통한 강관 매입말뚝의 지지력 안전율 제안)

  • Park, Jong-Jeon;Jeong, Sang-Seom;Park, Jeong-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.5-17
    • /
    • 2018
  • In this study, the static and dynamic load tests were carried out to propose the safety factor of steel prebored and precast piles in weathered rocks. The axial load tests have been conducted on test piles with nominal diameters of 0.508 and 0.457 m. The piles were subject to static loading tests (14 times) and dynamic loading tests (EOID 14times, Restrike 14times). The dynamic loading tests were first executed after the casting of test piles ((1) initial EOID test). (2)In the succeding 28 days from completion of construction, static load tests were performed and (3)final restrike tests were carried out after 15 days from the static test. As a result, the bearing capacity based on Davisson method was 15% higher than that of the restrike tests. The bearing capacity of the static load tests were larger than that of the dynamic tests. By comparing the safety factor through various loading tests, the safety factor of dynamic loading tests were suggested to be lowered to 1.75 from the conventional 2.0.

Dynamic and static structural displacement measurement using backscattering DC coupled radar

  • Guan, Shanyue;Rice, Jennifer A.;Li, Changzhi;Li, Yiran;Wang, Guochao
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.521-535
    • /
    • 2015
  • Vibration-based monitoring is one approach used to perform structural condition assessment. By measuring structural response, such as displacement, dynamic characteristics of a structure may be estimated. Often, the primary dynamic responses in civil structures are below 5 Hz, making accurate low frequency measurement critical for successful dynamic characterization. In addition, static deflection measurements are useful for structural capacity and load rating assessments. This paper presents a DC coupled continuous wave radar to accurately detect both dynamic and static displacement. This low-cost radar sensor provides displacement measurements within a compact, wireless unit appropriate for a range of structural monitoring applications. The hardware components and operating mechanism of the radar are introduced and a series of laboratory experiments are presented to assess the performance characteristics of the radar. The laboratory and field experiments investigate the effect of factors such as target distance, motion amplitude, and motion frequency on the radar's measurement accuracy. The results demonstrate that the radar is capable of both static and dynamic displacement measurements with sub-millimeter accuracy, making it a promising technology for structural health monitoring.

The Macroeconomic Production Model in Business Environment - Analying with a Static and Dynamic Equations

  • Donghae LEE
    • Asian Journal of Business Environment
    • /
    • v.14 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • Purpose: The purpose of this research is to explore the macroeconomic model through both static and dynamic equations. The primary objective of this study is to investigate the variations in the elasticity of substitution across changing economic variables within the framework of the Allen-Uzawa production functions. Research, design, data and methodology: The data were drawn from the World Bank's annual central statistical office database from 2010 to 2021 in the United States of America. The level of expenditures and of the public finance sector, macroeconomic data like output, inflation rates, and labor are examined. Results: This study demonstrates the interaction of two equations, clarifying that the macroeconomic model is practical to determining the stability of both static and dynamic equation systems analytically. The Allen-Uzawa equations allow for the verification of macroeconomic model properties, and study results demonstrate an increase in the range of capital uses as a form of mechanization. A constant elasticity of substitution function is derived from the macroeconomic variables. Conclusion: The macroeconomic model, though the analysis of the static and dynamic Allen - Uzawa model, not only facilitates the examination of long-term trends in crucial endogenous variables but also overcomes challenges commonly associated with other mathematical methods. Overall, the analysis promotes economic growth, investment, and employment. The levels of expenditures and the public finance sector, along with macroeconomic data such as output, inflation rates, and labor, are examined.

Local Nonlinear Static Analysis via Static Condensation (강성응축기법을 이용한 국부 비선형 정적 해석)

  • Shin, Han-Seop;Oh, Min-Han;Boo, Seung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.193-200
    • /
    • 2021
  • In this study, an analysis technique using static condensation is proposed for an efficient local nonlinear static analysis. The static condensation method is a model reduction method based on the degrees of freedom, and the analysis model is divided into a target part and a condensed part to be omitted. In this study, the nonlinear and linear parts were designated to the target and the omitted parts, respectively, and both the stiffness matrix and load vector corresponding to the linear part were condensed into the nonlinear part. After model condensation, the reduced model comprising the stiffness matrix and the load vector for the nonlinear part is constructed, and only this reduced model was updated through the Newton-Raphson iteration for an efficient nonlinear analysis. Finally, the efficiency and reliability of the proposed analysis technique were presented by applying it to various numerical examples.

A Base Address Analysis Tool for Static Analysis of ARM Architecture-Based Binary (ARM 아키텍처 기반 바이너리 정적 분석을 위한 기준 주소 분석 도구)

  • Kang, Ji-Hun;Ryou, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1185-1189
    • /
    • 2016
  • In modern society, the number of embedded devices has been increasing. However, embedded devices is growing, and the backdoor and vulnerabilities are found continously. It is necessary for this analysis. In this paper, we developed a tool to extract the base address information for the static analysis environment built of the embedded device's firmware. By using this tool, we built the environment for static analysis. As a result, this point enables us to parse the strings and to check the reference. Also, through the increased number of functions, we proved the validity of the tool.