• Title/Summary/Keyword: Static condition

Search Result 1,221, Processing Time 0.029 seconds

Fatigue Life Prediction of Sensor Pod for Aircraft Considering Aircraft Loads (비행체 하중을 고려한 항공기용 센서 포드의 피로수명 예측)

  • Cho, Jae Myung;Jang, Joon;Choi, Woo Chun;Bae, Jong In
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.32-39
    • /
    • 2019
  • Sensor pods mounted on the exterior of the aircraft used for tactical missions should have a fatigue life based on the expected load spectrum during operation. For mission equipment such as the sensor pod, the frequency fatigue life prediction method which applies the dynamic vibration environment condition is preferred due to the efficiency of the analysis. In this paper, a fatigue life prediction method in the frequency domain where stress due to static and dynamic loads is synthesized based on the actual flight load spectrum is proposed. After comparison with the existing analysis method, the fatigue life of the proposed analysis method was predicted conservatively. The proposed sensor pods satisfy the requirements of the fatigue life.

A Numerical Study on the Structural Stability Optimization of the Core Components of a 17cc Automotive Compressor (17cc급 자동차용 압축기 핵심부품의 구조 안정성에 관한 수치적 연구)

  • Yang, Yong-Kun;Wu, Yu-Ting;Qin, Zhen;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.69-75
    • /
    • 2021
  • Fuel economy has always been a major issue for the automotive industry due to environmental concerns. In particular, it is known that only 5-20% of the energy generated in a car that mainly uses an internal combustion engine is converted to increase fuel efficiency, many methods have been proposed. Among these methods, weight reduction is most commonly used because it is the simplest and cheapest. Weight is always the main reason for energy consumption, therefore, reducing weight is the best way to increase fuel efficiency while simultaneously saving on material costs. To reduce the weight of a compressor, material substitution is used. However, aluminum (a lighter metal substitute) is more fragile than steel, therefore, structural stability must be verified through testing. In this paper, we performed a 3D analysis to investigate whether aluminum can be used without compromising structural stability. Our investigation included static analysis and thermal analysis. As a result, we found that an aluminum swash plate can be safely applied on a shaft instead of steel; it reduces weight while maintaining stability that is equal to or better than steel.

Microstructure and Mechanical Property Changes of Unidirectional and Plain Woven CF/Mg Composite Laminates after Corrosion (일방향 및 평직 CF/Mg 복합재 적층판의 부식에 따른 미세조직 및 기계적 특성 변화)

  • Yim, Shi On;Lee, Jung Moo;Lee, Sang Kwan;Park, Yong Ho;Park, Ik Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.697-702
    • /
    • 2012
  • In this study, unidirectional and plain woven carbon fiber reinforced magnesium matrix composite laminates were fabricated by the liquid pressing infiltration process, and evolutions of the microstructure and compressive strength of the composite laminates under corrosion were investigated by static immersion tests. In the case of the unidirectional composite laminate, the main microstructural damage during immersion appeared as a form of corrosion induced cracks, which were formed at both CF/Mg interfaces and the interfaces between layers. On the otherhand, wrap/fill interface cracks were mainly formed in the plain woven composite laminate, without any cracks at the CF/Mg interface. The formation of these cracks was considered to be associated with internal thermal residual stress, which was generated during cooling after the fabrication process of these materials. As a consequence of the corrosion induced cracks, the thickness of both laminates increased in directions vertical to the fibers with increasing immersion time. With increasing immersion time, the compressive strengths of both composite laminates also decreased continuously. It was found that the plain woven composite laminates have superior corrosion resistance and stability under a corrosive condition than unidirectional laminates.

A Study on the Wearing Condition and Design Preferences of the Rash Guard (래시가드 착용실태 및 디자인 선호 연구)

  • Han, Yuchen;Choi, Jeongwook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.1
    • /
    • pp.45-57
    • /
    • 2022
  • A rash guard, also known as rash vest or rashie, is functional sportswear that protects the wearer's skin from various dangers during outdoor sports activities. It is durable and comfortable since it is designed considering muscle movement. In modern society, more and more people enjoy leisure activities due to an increase in income level and increased leisure hours. Water leisure activities are increasingly enjoyed in the summer. As the way people think of leisure evolves, people are more inclined toward dynamic leisure sports rather than static facility tourism. Therefore, more research on rash guards is required. By identifying and analyzing the design preferences and purchase behaviors of young adults on rash guards, this study aims to provide basic data on the actual sportswear behaviors concerning those who are most active in water sports, people in their 20s and 30s. Furthermore, the study aims to contribute to a healthy exercise lifestyle for women who enjoy water sports and the growth of the water sportswear market. In the study, a survey was conducted using a questionnaire to investigate the wearing behaviors and purchase preferences as well as the wearing satisfaction on rash guards. For the study, 200 copies of the questionnaire were distributed and collected to be used as analysis data. The questionnaire consisted of 36 questions, 6 about demographic characteristics, 11 about purchase preferences, and 19 about wearing satisfaction. The collected data was analyzed using the statistical program SPSS 8.0. The study results can be used as basic data to investigate the design preferences and wearing behaviors of rash guards of women in their 20s and 30s. The results found numerous complaints on comfortableness and durability, which suggests more concern and improvements are necessary in those areas when designing patterns for rash guards.

Characteristics of Static Buckling Load of the Hexagonal Spatial Truss Models using Timber (목재를 이용한 육각형 공간 트러스 모델의 정적좌굴하중 특성)

  • Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.

Analysis of Microstructural Refinement for Inconel 706 during Hot Forging Process through Reheating and Strain (Inconel 706의 열간단조 공정 중 재가열과 변형양에 따른 결정립 미세화에 대한 분석)

  • S. G. Seong;H. J. Kang;Y. S. Lee;S. Y. Lee;U. J. Lee;H. I. Jae;J. H. Shin;E. Y. Yoon
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.239-246
    • /
    • 2023
  • To reduce the forming load due to the temperature drop, during the hot forging process, a reheating hot forging process design is required that to repeat heating and forging. However, if the critical strain required for recrystallization is not induced during forging and grain growth becomes dominant due to the reduction in dislocation density due to repeated heating, the mechanical properties may deteriorate. Therefore, in this study, Inconel 706 alloy was applied, and the grain refinement behavior was comparatively analyzed according to the number of reheating times and effective strain during reheating hot forging process. Reheating was carried out with a total compression rate of 40% up to 4 times. The Inconel 706 compression test specimens heated once showed finer grains as the effective strain increased due to the dynamic recrystallization phenomenon. However, as the number of heating increases, grain refinement was observed even in a low effective strain distribution of 0.43 due to static recrystallization during reheating. Moreover, grain growth occurs at a relatively low effective strain of 0.43 when the number of reheating is four or more. Therefore, it was effective to apply an effective strain of 0.43 or more during hot forging to Inconel 706 in order to induce crystallization through grain refinement and improve the properties of forged products. In addition, we could notice that up to three reheating times condition was appropriate to prevent grain growth and maintain fine grain size.

Analysis of the Transmission Error of Spur Gears Depending on the Finite Element Analysis Condition (스퍼 기어의 유한요소해석 조건에 따른 전달 오차 경향성 분석)

  • Jaeseung Kim;Jonghyeon Sohn;Min-Geun Kim;Geunho Lee;Suchul Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.121-130
    • /
    • 2023
  • Finite element analysis is widely used to predict the structural stability and tooth contact performance of gears. This study focused on the effect of finite element modeling conditions of a spur gear on the simulation result and the model simplification. The gear body and teeth, teeth width, configuration of mesh, frictional coefficient, and simulation time interval (gear mesh cycle division) were selected for model simplification for gear analysis. The static transmission error during a single-gear mesh cycle was calculated to represent the performance of the gear, and the elapsed time was measured as a simplification factor. Contact stress distribution was also checked. The differences in maximum transmission error and elapsed time depending on the model simplification methods were analyzed. After all simplification methods were estimated, an optimal combination of the methods was defined, and the result was compared with that of the most detailed modeling methods.

Study on design of the composite torque link for a landing gear system of a helicopter (헬리콥터 착륙장치를 위한 복합재 토크링크의 설계에 대한 연구)

  • Kim, Jin-Bong;Um, Moon-Kwang;Lee, Sang-Yong;Kim, Tae-Uk;Shin, Jeong-Woo
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.30-36
    • /
    • 2009
  • In this paper, we propose the design method for the composite torque link of a landing gear for a helicopter. The composite torque link has to be light weighted and very stiff to keep the shock absorber in the landing gear of helicopter. The configuration and structural shape has to be designed in consideration of the RTM (Resin Transfer Molding) manufacturing process which is adopted to minimize the manufacturing cost. The mechanical properties are obtained through the coupon tests with the specimens made by the same manufacturing process for the composite structure. The optimal design process was performed through iterative modifications of the models which were verified by stress analysis using FEM. The composite torque link has lug-shaped parts and is very thick, so 3D Layered solid elements of ABAQUS were used to get the stress field including the stress components in thickness direction and non-linear static analysis using contact B.C. of rigid-deform condition was used to get the optimal design.

Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates

  • Fatima Bounouara;Mohamed Sadoun;Mahmoud Mohamed Selim Saleh;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.693-707
    • /
    • 2023
  • This article investigates the static thermo-mechanical response of anisotropic thick laminated composite plates on Visco-Pasternak foundations under various thermal load conditions (linear, non-linear, and uniform) along the transverse direction (thickness) of the plate, while keeping the mechanical load constant. The governing equations, which represent the thermo-mechanical behavior of the composite plate, are derived from the principle of virtual displacements. Using Navier's type solution, these equations are solved for the composite plate with simply supported condition. The Visco-Pasternak foundation type is included by considering the impact of the damping on the classical foundation model, which is modeled by Winkler's linear modulus and Pasternak's shear modulus. The excellent accuracy of the present solution is confirmed by comparing the results with those available in the literature. The study investigates the impact of geometric ratios, thermal expansion coefficient ratio, damping coefficient and foundation parameters on the thermo-mechanical flexural response of the composite plate. Overall, this article provides insights into the behavior of composite plates on visco-Pasternak foundations and may be useful for designing and analyzing composite structures in practical applications.

A Study on Relationship between Structural Safety and Maintenance of Derailing Prevent Guard Rail (탈선방지 가드레일의 구조안전성과 유지보수 상관성에 관한 연구)

  • Jung-Youl Choi;Hyeon-Yo Park;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.593-599
    • /
    • 2023
  • There is risk of derailment due to various factors such as vehicle-track load imbalance in curved parts, so urban railways install and operate derailing prevent guard rails. The angle-type derailing prevent guard rail is composed of various parts including the guard angle. Even if derailment does not occur, various damages occur in the components, so continuous maintenance is required. Through the damage status analysis, the components of the angle-type derailing prevent guard rail with high damage frequency were classified, and conditions for the occurrence of various damages were investigated. In addition, a numerical analysis using a precise 3D numerical model was performed to analyze the cause of the damage analytically. In order to analytically simulate the derailment situation, the static ultimate load condition was applied, and the actual drawing of the angle-type derailing prevent guard rails, rails, and wheels was used for modeling. By analyzing the results of the damage status investigation and finite element analysis, we tried to investigate the damage of the components.