• 제목/요약/키워드: Static and dynamic stiffness evaluation

검색결과 49건 처리시간 0.024초

Fatigue performance evaluation of reinforced concrete element: Efficient numerical and SWOT analysis

  • Saiful Islam, A.B.M.
    • Computers and Concrete
    • /
    • 제30권4호
    • /
    • pp.277-287
    • /
    • 2022
  • Due to the scarcity of extortionate experimental data, fatigue failure of the reinforced concrete (RC) element might be achieved economically adopting nonlinear finite element (FE) analysis as an alternative approach. However, conventional implicit dynamic analysis is expensive, quasi-static method overlooks interaction effects and inertia, direct cyclic analysis computes stabilized responses. Apart from this, explicit dynamic analysis may provide a numerical operating system for factual long-term responses. The study explores the fatigue behavior based on a simplified explicit dynamic solution employing nonlinear time domain analysis. Among fourteen RC beams, one beam is selected to validate under static loading, one under fatigue with the experimental study and other twelve to check the detail fatigue behavior. The SWOT (Strength, Weakness, Opportunities, Threats) analysis has been carried out to pinpoint the detail scenario in the adoption of numerical approach as an alternative to the experimental study. Excellent agreement of FE and experimental results is seen. The 3D nonlinear RC beam model at service fatigue limits is truthful to be used as an expedient contrivance to envisage the precise fatigue behavior. The simplified analysis approach for RC beam under fatigue offers savings in computation to predict responses providing acceptable accuracy rather than the complicated laboratory investigation. At higher frequency, the flexural failure occurs a bit earlier gradually compared to the repeated loading case of lower frequency. The deflection increases by 6%-10% at the end of first cycle for beams with increasing frequency of cyclic loading. However, at the end of fatigue loading, greater deflection occur earlier for higher load range because of more rapid stiffness degradation. For higher frequency, a slight boost in concrete compressive strains at an initial stage of loading has been seen indicating somewhat stepper increment. Stiffness degradation in larger loading cycle at same duration escalates the upsurge of the rate of strain in case of higher frequency.

철근콘크리트 보통전단벽의 전단력 증폭효과 근사해석 (Approximate Analysis for Shear Force Amplification Effect in Ordinary RC Shear Walls)

  • 전성하;박지훈
    • 한국지진공학회논문집
    • /
    • 제24권3호
    • /
    • pp.129-139
    • /
    • 2020
  • An approximate analysis method is proposed to predict the dynamic amplification of shear forces in ordinary reinforced concrete shear walls as a preliminary study. First, a seismic design for three groups of ordinary reinforced concrete shear walls higher than 60 m was created on the basis of nonlinear dynamic analysis. Causes for the dynamic amplification effect of shear forces were investigated through a detailed evaluation of the nonlinear dynamic analysis result. A new modal combination rule was proposed on the basis of that observation, in which fundamental mode response and combined higher mode response were summed directly. The fundamental mode response was approximated by nonlinear static analysis result, while higher mode response was computed using response spectrum analysis for equivalent linear structural models with the effective stiffness based on the nonlinear dynamic analysis result. The proposed approximate analysis generally predicted vertical distribution of story shear and shear forces of individual walls from the nonlinear dynamic analysis with comparable accuracy.

내진 설계를 위한 에너지 소산량 산정법의 활용 (Application of Energy Dissipation Capacity to Earthquake Design)

  • 임혜정;박홍근;엄태성
    • 한국지진공학회논문집
    • /
    • 제7권6호
    • /
    • pp.109-117
    • /
    • 2003
  • 기존의 비선형 정적 및 동적 해석에서는 철근콘크리트 구조물의 에너지 소산능력을 정확히 고려하지 못하고 있다. 최근 연구에서는 휨지배 철근콘크리트 부재의 에너지 소산능력을 정확히 평가할 수 있는 식이 개발되었으며, 본 연구에서는 이 평가방법을 이용하여 에너지 소산능력을 정확히 고려할 수 있는 비선형 정적 및 동적 해석 방법을 개발하였다. 비선형 정적 해석을 위하여 에너지 스펙트럼 곡선을 개발하고 이를 적용하여 능력스펙트럼법을 개선하였으며, 또한 비선형 동적 해석을 위하여 철근콘크리트 부재의 단순화된 에너지 기초 주기거동모델을 개발하였다. 제안된 모델은 부재의 강성에 기초한 기존의 주기거동모델과는 달리 완전한 주기거동 발생시 소산되는 에너지를 정확하게 반영할 수 있다. 본 연구에서는 제안된 방법에 따라 비선형 정적 및 동적 해석법의 절차를 정립하였으며 이를 적용한 컴퓨터 해석 프로그램을 개발하였다. 제안된 해석 방법은 부재의 단면형태, 철근비, 배근형태 등 설계 변수에 따른 에너지 소산능력을 정확하게 고려하고 지진발생시 에너지 소산능력이 구조물의 성능에 미치는 효과를 반영할 수 있다.

Vibration based damage identification of concrete arch dams by finite element model updating

  • Turker, Temel;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.209-220
    • /
    • 2014
  • Vibration based damage detection is very popular in the civil engineering area. Especially, special structures like dams, long-span bridges and high-rise buildings, need continues monitoring in terms of mechanical properties of material, static and dynamic behavior. It has been stated in the International Commission on Large Dams that more than half of the large concrete dams were constructed more than 50 years ago and the old dams have subjected to repeating loads such as earthquake, overflow, blast, etc.,. So, some unexpected failures may occur and catastrophic damages may be taken place because of theloss of strength, stiffness and other physical properties of concrete. Therefore, these dams need repairs provided with global damage evaluation in order to preserve structural integrity. The paper aims to show the effectiveness of the model updating method for global damage detection on a laboratory arch dam model. Ambient vibration test is used in order to determine the experimental dynamic characteristics. The initial finite element model is updated according to the experimentally determined natural frequencies and mode shapes. The web thickness is selected as updating parameter in the damage evaluation. It is observed from the study that the damage case is revealed with high accuracy and a good match is attained between the estimated and the real damage cases by model updating method.

WUF-B 접합부 및 합성슬래브로 설계된 철골모멘트골조의 에너지 기반 근사해석을 이용한 연쇄붕괴 저항성능 평가 (Evaluation of Progressive Collapse Resistance of Steel Moment Frame with WUF-B Connection and Composite Slab using Equivalent Energy-based Static Analysis)

  • 노삼영;박기환;홍성철;이상윤
    • 대한건축학회논문집:구조계
    • /
    • 제34권2호
    • /
    • pp.19-28
    • /
    • 2018
  • The progressive collapse resistance performance of a steel structure constructed using the moment frame with the WUF-B connection and the composite slabs was evaluated. GSA 2003 was adapted for the evaluation. Additionally the structural robustness and the sensitivity against the progressive collapse were analyzed. In the numerical analysis, a reduced model comprised of the beam and spring elements for WUF-B connection was adapted. The composite slab was modeled using the composite-shell element. Instead of the time-consuming dynamic analysis for the effect of the sudden column removal, the equivalent energy-based static analysis was effectively applied. The analysis results showed that the structure was the most vulnerable to in the case of the internal column removal, however it satisfied the chord rotation criterion of GSA 2003 due to the contribution of the composite slab which improved the stiffness of structure. In the robustness evaluation, the structural performance showed more than 2.5 times of the requirement according to GSA 2003, and the structural sensitivity analysis indicated the decrease of 33% of the initial structural performance.

터널라이닝 안전관리를 위한 발파제한영역 평가 (Evaluation of the blast-restriction zone to secure tunnel lining safety)

  • 신종호;문훈기;최규철;김태균
    • 한국터널지하공간학회 논문집
    • /
    • 제11권1호
    • /
    • pp.85-95
    • /
    • 2009
  • 도심에서 지하구조물, 고층빌딩의 건설은 기존 지하철 터널의 근접시공이 수반되는 경우가 많다. 이 경우 지하철 구조물의 정적 동적인 안정성이 동시에 확보 되도록 하여야 하며 국내에서는 일반적으로 정적인 관리 기준만 제시되었다. 하지만, 도심지 근접시공이 많은 굴착 제약 조건하에서도 발파를 수행되는 경우가 대부분이므로 동적 가이드라인 또한 필요하다. 본 연구에서는 수치해석을 활용하여 발파진동에 따른 영향을 검토하고, 발파 제약영역을 추정하고자 하였다. 특히, 지하철 터널의 토피고 및 지반특성을 변화시켜 구조물의 최대진동속도 변화를 분석하였다. 해석결과 토피가 증가할수록 진동속도가 감소하는 결과를 보였다. 지반강성 변화 파라미터 스터디 결과 직경의 $1{\sim}2$배 이격 시 풍화암, 연암, 경암의 순서로 라이닝 진동속도가 더 커지는 결과를 보였지만, 이격되는 거리가 직경의 3.5배의 경우는 지반과 무관해지는 경우를 보였다. 진동규제속도인 1 cm/sec를 만족하는 발파위치 포락선 분석결과 전반적으로 지반특성이나, 심도의 차이에도 그 영향은 현저하지 않음을 보였다.

Energy-factor-based damage-control evaluation of steel MRF systems with fuses

  • Ke, Ke;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.589-611
    • /
    • 2016
  • The primary objectives of this research are to investigate the energy factor response of steel moment resisting frame (MRF) systems equipped with fuses subject to ground motions and to develop an energy-based evaluation approach for evaluating the damage-control behavior of the system. First, the energy factor of steel MRF systems with fuses below the resilience threshold is derived utilizing the energy balance equation considering bilinear oscillators with significant post-yielding stiffness ratio, and the effect of structural nonlinearity on the energy factor is investigated by conducting a parametric study covering a wide range of parameters. A practical transformation approach is also proposed to associate the energy factor of steel MRF systems with fuses with classic design spectra based on elasto-plastic systems. Then, the energy balance is extended to structural systems, and an energy-based procedure for damage-control evaluation is proposed and a damage-control index is also derived. The approach is then applied to two types of steel MRF systems with fuses to explore the applicability for quantifying the damage-control behavior. The rationality of the proposed approach and the accuracy for identifying the damage-control behavior are demonstrated by nonlinear static analyses and incremental dynamic analyses utilizing prototype structures.

Layout evaluation of building outrigger truss by using material topology optimization

  • Lee, Dongkyu;Shin, Soomi;Lee, Jaehong;Lee, Kihak
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.263-275
    • /
    • 2015
  • This study presents conceptual information of newly optimized shapes and connectivity of the so-called outrigger truss system for modern tall buildings that resists lateral loads induced by wind and earthquake forces. In practice, the outrigger truss consists of triangular or Vierendeel types to stiffen tall buildings, and the decision of outrigger design has been qualitatively achieved by only engineers' experience and intuition, including information of structural behaviors, although outrigger shapes and the member's connectivity absolutely affect building stiffness, the input of material, construction ability and so on. Therefore the design of outrigger trusses needs to be measured and determined according to scientific proofs like reliable optimal design tools. In this study, at first the shape and connectivity of an outrigger truss system are visually evaluated by using a conceptual design tool of the classical topology optimization method, and then are quantitatively investigated with respect to a structural safety as stiffness, an economical aspect as material quantity, and construction characteristics as the number of member connection. Numerical applications are studied to verify the effectiveness of the proposed design process to generate a new shape and connectivity of the outrigger for both static and dynamic responses.

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.

자동차용 라운드 리클라이너 정적/동적 구조 강도 평가 (Evaluation of Static/Dynamic Structural Strength for Automotive Round Recliner)

  • 이동재;박창수;이경택;김상범;김헌영
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.140-146
    • /
    • 2005
  • This study presents the development of a round recliner using the finite element method. That reduces the number of test repeating times and gives an information about stiffness. A simulation model of round recliner mounting seat module and tooth strength simulation are established using a PAM-CRASH and ABAQUS. With the optimization of gear profile, structural strength design of round recliner was achieved. The round recliner seat module simulation, structure strength simulation and a crash safety are requested by FMVSS test. Solution of round recliner optimum variable study and design problem are searched for round recliner stress, deformation and application. Also an examination of safety is made.