• 제목/요약/키워드: Static analysis method

검색결과 2,328건 처리시간 0.026초

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

Structural damage identification using incomplete static displacement measurement

  • Lu, Z.R.;Zhu, J.J.;Ou, Y.J.
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.251-257
    • /
    • 2017
  • A local damage identification method using measured structural static displacement is proposed in this study. Based on the residual force vector deduced from the static equilibrium equation, residual strain energy (RSE) is introduced, which can localize the damage in the element level. In the case of all the nodal displacements are used, the RSE can localize the true location of damage, while incomplete displacement measurements are used, some suspicious damaged elements can be found. A model updating method based on static displacement response sensitivity analysis is further utilized for accurate identification of damage location and extent. The proposed method is verified by two numerical examples. The results indicate that the proposed method is efficient for damage identification. The advantage of the proposed method is that only limited static displacement measurements are needed in the identification, thus it is easy for engineering application.

선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (I) - 알고리듬 - (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I))

  • 박기종;박경진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1051-1060
    • /
    • 2005
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. The conventional method spends most of the total design time on nonlinear analysis. The NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The proposed algorithm is applied to a simple mathematical problem to verify the convergence and the optimality.

현장정재하시험을 이용한 말뚝 거동특성 수치해석 예측기법의 신뢰성 검증 (Reliability Verification of Numerical Prediction Method on Pile Behaviour Characteristics using Field Static Loading Test)

  • 남호성;백승철
    • 한국지반환경공학회 논문집
    • /
    • 제18권9호
    • /
    • pp.11-18
    • /
    • 2017
  • 수치해석기법을 이용한 말뚝의 거동특성 예측방법은 정재하시험비가 고가이기 때문에 공사 전 말뚝의 거동을 예측할 수 있다는 장점으로 설계단계에서 널리 이용되고 있지만 그 신뢰성에 대한 연구는 부족한 실정이다. 본 연구에서는 실제 현장에서 말뚝의 거동과 수치해석으로 예측한 말뚝의 거동을 비교함으로써 수치해석 기법의 신뢰성을 검증하였다. 지반과 말뚝의 상호작용에 의한 말뚝의 거동을 정확하게 파악하기 위하여 정재하시험이 수행되는 지반에서 시추조사, 현장원위치시험 등을 통해 지반특성을 확인하였고, 실규모 정재하시험을 수행하여 말뚝의 거동특성을 분석하였다. 정재하시험이 수행된 방식과 동일하게 수치해석을 모사하여 재하시험과 동일한 하중단계에서 말뚝의 거동을 수치해석으로 모사하여 현장시험 결과와 비교함으로써 수치해석 기법의 신뢰성을 검증하였다.

부 타이어 소파제의 정적 장력 해석 방법 (Static Tension Analysis Method for Floating Tire Breakwater)

  • 윤길수;추원효
    • 한국수산과학회지
    • /
    • 제26권1호
    • /
    • pp.31-40
    • /
    • 1993
  • This paper deals with static tension analysis method for Floating Tire Breakwater(FTB). FTB can be used for the limited wave height. It is especially focused on Goodyear type FTB easily applied to the breakwater for the fisheries cultivating region. The numerical examples for FTB design procedure was reviewed. It is also studied the static analysis method of offshore catenary spread mooring system. The general calculation procedure for the tension versus excursion curves for the multi-line system using the basic catenary relationship was studied. Calculation results showed good agreement with some existing mooring results. To extend this mooring force calculating method to the floating fisheries caitivating cages, the strength of synthetic fiber was considered. This analysis method can be used to the estimation of the mooring force for the floating structures such as floating breakwaters and floating artificial reefs.

  • PDF

외연적 탄소성 유한요소해석에서의 민감도 해석과 준정적 변형에의 응용 (Sensitivity Analysis of the Explicit Elasto-plastic Finite Element Method and Application to the Quasi-static Deformation)

  • 김세호;허훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.402-407
    • /
    • 2001
  • Sensitivity analysis scheme is developed in the elasto-plastic finite element method with explicit time integration using direct differentiation method. The direct differentiation is concerned with the time integration, constitutive relation, shell element with reduced integration and the contact scheme. Sensitivity analysis results are mainly examined with the highly nonlinear and quasi-static problem with the complicated contact condition. The result shows stable sensitivity especially in the sheet metal forming analysis.

  • PDF

2차원 단면해석을 위한 정적-외연적 강소성 유한요소법의 개발 및 적용 (The Development of Static-explicit Rigid-plastic Finite Element Method and Application to 2-dimension Sectional Analysis)

  • 정동원;이승훈
    • 한국기계가공학회지
    • /
    • 제2권2호
    • /
    • pp.91-97
    • /
    • 2003
  • In rigid-plastic finite element method, there is a heavy computation time and convergence problem. In this study, revised rigid-plastic finite element method Will be introduced. This method is the way that restrict the convergence interval. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis method were no longer a critical problem. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

Extracting the K-most Critical Paths in Multi-corner Multi-mode for Fast Static Timing Analysis

  • Oh, Deok-Keun;Jin, Myeoung-Woo;Kim, Ju-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권6호
    • /
    • pp.771-780
    • /
    • 2016
  • Detecting a set of longest paths is one of the crucial steps in static timing analysis and optimization. Recently, the process variation during manufacturing affects performance of the circuit design due to nanometer feature size. Measuring the performance of a circuit prior to its fabrication requires a considerable amount of computation time because it requires multi-corner and multi-mode analysis with process variations. An efficient algorithm of detecting the K-most critical paths in multi-corner multi-mode static timing analysis (MCMM STA) is proposed in this paper. The ISCAS'85 benchmark suite using a 32 nm technology is applied to verify the proposed method. The proposed K-most critical paths detection method reduces about 25% of computation time on average.

Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams

  • Azandariani, Mojtaba Gorji;Gholami, Mohammad;Nikzad, Akbar
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.37-47
    • /
    • 2022
  • In this paper, the non-linear static analysis of Timoshenko nanobeams consisting of bi-directional functionally graded material (BFGM) with immovable ends is investigated. The scratching in the FG nanobeam mid-plane, is the source of nonlinearity of the bending problems. The nonlocal theory is used to investigate the non-linear static deflection of nanobeam. In order to simplify the formulation, the problem formulas is derived according to the physical middle surface. The Hamilton principle is employed to determine governing partial differential equations as well as boundary conditions. Moreover, the differential quadrature method (DQM) and direct iterative method are applied to solve governing equations. Present results for non-linear static deflection were compared with previously published results in order to validate the present formulation. The impacts of the nonlocal factors, beam length and material property gradient on the non-linear static deflection of BFG nanobeams are investigated. It is observed that these parameters are vital in the value of the non-linear static deflection of the BFG nanobeam.

분산 분석을 이용한 자동차 안전벨트 준정적 해석과 인장시험 상관성 개선 (Quasi-static Analysis of Vehicle Seatbelt Using Analysis of Variance and Improvement of Tensile Test Correlation)

  • 이광섭;어영우;김삼성;김두용;송택림;이경상
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.273-278
    • /
    • 2016
  • This study makes a relative comparison of the results of tensile test and quasi-static analysis using AGL(Adjuster Guide Loop) model that plays a role in adjusting the height of shoulder belt, of the components of the vehicle seatbelt system and attempts to propose a method of reducing the error rate of the quasi-static analysis technique effectively. This study selects two major factors affecting the result of an analysis, draws the result of analysis through the method of experimental design, one of the statistical techniques and understands the contribution rate of the major factors affecting the result of the analysis through ANOVA(Analysis of Variance).