• Title/Summary/Keyword: Static analysis

Search Result 5,483, Processing Time 0.031 seconds

Failure analysis of composite plates under static and dynamic loading

  • Ray, Chaitali;Majumder, Somnath
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • The present paper deals with the first ply failure analysis of the laminated composite plates under various static and dynamic loading conditions. Static analysis has been carried out under patch load and triangular load. The dynamic failure analysis has been carried out under triangular pulse load. The formulation has been carried out using the finite element method and a computer code has been developed. The first order shear deformation theory has been applied in the present formulation. The displacement time history analysis of laminated composite plate has been carried out and the results are compared with those published in literature to validate the formulation. The first ply failure load for laminated composite plates with various lamination schemes under static and dynamic loading conditions has been calculated using various failure criteria. The failure index-time history analysis has also been carried out and presented in this paper.

A Comparative Study on Elastic-Plastic-Static Analysis of Sheet Metal Forming (탄소성 정적해석시 해에 미치는 여러인자들의 비교연구)

  • 박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.241-244
    • /
    • 1999
  • A series of parametric study was performed for the investigation of the influence of several analysis parameters to the solution behavior in the elasti-plastic-static analysis of sheet metal forming. The parameters taken into the consideration in the present study are finite element mesh distribution and numerical integration scheme, The elstic-plastic-static analysis was performed for two cases : deflection by a point force bending by a punch Results obtained with different selections of the parameters were compared with each other experimental measurements and analytical solutions.

  • PDF

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

Static and dynamic finite element analysis of honeycomb sandwich structures

  • Triplett, Matt H.;Schonberg, William P.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.95-113
    • /
    • 1998
  • The extensive use of honeycomb sandwich structures has led to the need to understand and analyze their low velocity impact response. Commercially available finite element software provides a possible analysis tool for this type of problem, but the validity of their material properties models for honeycomb materials must be investigated. Three different problems that focus on the effect of differences in honeycomb material properties on static and dynamic response are presented and discussed. The first problem considered is a linear elastic static analysis of honeycomb sandwich beams. The second is a nonlinear elastic-plastic analysis of a circular honeycomb sandwich plate. The final problem is a dynamic analysis of circular honeycomb sandwich plates impacted by low velocity projectiles. Results are obtained using the ABAQUS final element code and compared against experimental results. The comparison indicates that currently available material properties models for honeycomb materials can be used to obtain a good approximation of the behavior of honeycomb sandwich structures under static and dynamic loading conditions.

Static Type Assignment for SSA Form in CTOC

  • Kim, Ki-Tae;Yoo, Weon-Hee
    • Journal of Information Processing Systems
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • Although the Java bytecode has numerous advantages, it also has certain shortcomings such as its slow execution speed and difficulty of analysis. In order to overcome such disadvantages, a bytecode analysis and optimization must be performed. The control flow of the bytecode should be analyzed; next, information is required regarding where the variables are defined and used to conduct a dataflow analysis and optimization. There may be cases where variables with an identical name contain different values at different locations during execution, according to the value assigned to a given variable in each location. Therefore, in order to statically determine the value and type, the variables must be separated according to allocation. In order to achieve this, variables can be expressed using a static single assignment form. After transformation into a static single assignment form, the type information of each node expressed by each variable and expression must be configured to perform a static analysis and optimization. Based on the basic type information, this paper proposes a method for finding the related equivalent nodes, setting nodes with strong connection components, and efficiently assigning each node type.

Structural identification and seismic performance of brick chimneys, Tokoname, Japan

  • Aoki, T.;Sabia, D.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.553-570
    • /
    • 2005
  • Dynamic and static analyses of existing structures are very important to obtain reliable information relating to actual structural properties. For this purpose a series of material test, dynamic test and static collapse test of the existing two brick chimneys, in Tokoname, are carried out. From the material tests, Young's modulus and compressive strength of the brick used for these chimneys are estimated to be 3200 MPa and 7.5 MPa, respectively. The results of static collapse test of the existing two brick chimneys are discussed in this paper and composed with the results from FEA (Finite Element analysis). From the results of dynamic tests, the fundamental frequencies of Howa and Iwata brick chimneys are estimated to be about 2.69 Hz and 2.93 Hz, respectively. Their natural modes are identified by ARMAV (Autoregressive Moving Average Vectors) model. On the basis of the static and dynamic experimental tests, a numerical model has been prepared. According to the European code (Eurocode n. 8: "Design of structures for earthquake resistance") non-linear static (Pushover) analysis of the two chimneys is carried out and they seem to be vulnerable to earthquakes with 0.25 to 0.35 g.

Reactor core analysis through the SP3-ACMFD approach. Part I: Static solution

  • Mirzaee, Morteza Khosravi;Zolfaghari, A.;Minuchehr, A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.223-229
    • /
    • 2020
  • The present work proposes a solution to the static Boltzmann transport equation approximated by the simplified P3 (SP3) on angular, and the analytic coarse mesh finite difference (ACMFD) for spatial variables. Multi-group SP3-ACMFD equations in 3D rectangular geometry are solved using the GMRES solution technique. As the core time dependent analysis necessitates the solution of an eigenvalue problem for an initial condition, this work is hence devoted to development and verification of the proposed static SP3-ACMFD solver. A 3D multi-group static diffusion solver is also developed as a byproduct of this work to assess the improvement achieved using the SP3 technique. Static results are then compared against transport benchmarks to assess the proximity of SP3-ACMFD solutions to their full transport peers. Results prove that the approach can be considered as an acceptable interim approximation with outputs superior to the diffusion method, close to the transport results, and with the computational costs less than the full transport approach. The work would be further generalized to time dependent solutions in Part II.

Nonlinear Subgrade Model-Based Comparison Study between the Static and Dynamic Analyses of FWD Nondestructive Tests (노상의 비선형 모델에 근거한 비파괴 FWD 시험에 있어 정적과 동적 거동의 비교연구)

  • Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over fine-grained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade model-based comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.

Automated static condensation method for local analysis of large finite element models

  • Boo, Seung-Hwan;Oh, Min-Han
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.807-816
    • /
    • 2017
  • In this paper, we introduce an efficient new model reduction method, named the automated static condensation method, which is developed for the local analysis of large finite element models. The algebraic multilevel substructuring procedure is modified appropriately, and then applied to the original static condensation method. The retained substructure, which is the local finite element model to be analyzed, is defined, and then the remaining part of the global model is automatically partitioned into many omitted substructures in an algebraic perspective. For an efficient condensation procedure, a substructural tree diagram and substructural sets are established. Using these, the omitted substructures are sequentially condensed into the retained substructure to construct the reduced model. Using several large practical engineering problems, the performance of the proposed method is demonstrated in terms of its solution accuracy and computational efficiency, compared to the original static condensation method and the superelement technique.

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I) (선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (I) - 알고리듬 -)

  • Park Ki-Jong;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1051-1060
    • /
    • 2005
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. The conventional method spends most of the total design time on nonlinear analysis. The NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The proposed algorithm is applied to a simple mathematical problem to verify the convergence and the optimality.