• Title/Summary/Keyword: Static Structural

Search Result 2,331, Processing Time 0.035 seconds

Optimization of Bumper Beam Section of Crashworthiness (충돌성능을 고려한 승용차 범퍼빔 단면의 최적화)

  • Kang, S.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.276-284
    • /
    • 1998
  • Optimum design of bumper beam is investigated using nonlinear CAE structural analysis techniques.In order to minimize its weight, while enhancing structural performances, bumper beam structural analyses were carried out to produce optimum section. Model is composed of bumper beam and stay. First, considering FMVSS safety standard, static strength and energy absorbing capability were estimated for several competitive bumpers through pendulum static analysis, and most promising section was chosen. Next, to ensure dynamic crashworthinesss performance for center pole impact was evaluated for the bumper beam with chosen section through pendulum static analysis, referring to DHS bumper dynamic impact standard. Finally, 2.5 mph bumper beam was designed and its structural performance was estimated. Through this investigation, an optimized bumper beam section with less weight of 20% while maintaining almost equal carshworthiness, compared with a conventional bumper beam section which proved its impact crashworthiness by experiments, was developed.

  • PDF

On the Bearing-to-Bearing Variability in Experimentally Identified Structural Stiffnesses and Loss Factors of Bump-Type Foil Thrust Bearings under Static Loads (범프 타입 포일 스러스트 베어링의 정하중 구조 강성 및 손실 계수 차이에 관한 실험적 연구)

  • Lee, Sungjin;Ryu, Keun;Jeong, Jinhee;Ryu, Solji
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.332-341
    • /
    • 2020
  • High-speed turbomachinery implements gas foil bearings (GFBs) due to their distinctive advantages, such as high efficiency, lesser part count, and lower weight. This paper provides the test results of the static structural stiffnesses and loss factors of bump-type foil thrust bearings with increasing preload and bearing deflection. The focus of the current work is to experimentally quantify variability in structural stiffnesses and loss factors among the four test thrust bearings with identical design values and material of the bump and top foil geometries using the same (open-source) fabrication method. A simple test setup, using a rigidly mounted non-rotating shaft and thrust disk, measures the bearing bump deflections with increasing static loads on the test bearing. The inner and outer diameters of the test bearings are 41 mm and 81 mm, respectively. The loss factor, best-representing energy dissipation in the test bearings, is estimated from the area inside the local hysteresis loop of the load versus the bearing deflection curve. The measurements show that structural stiffnesses and loss factors of the test bearings significantly rely on applied preloads and bearing deflections. Local structural stiffnesses of the test bearings increase with applied preloads but decrease with bearing deflections. Changes of loss factors are less sensitive to applied preloads and bearing deflections compared to those of structural stiffnesses. Up to 35% variability in static load structural stiffnesses is found between bearings, while up to 30% variability in loss factors is found between bearings.

An Experimental Study on the Structure Behavior of H & Channel-Type Lining Board (H형 복공판과 Channel형 복공판의 구조거동에 관한 연구)

  • Lee, Seung-Soo;Kim, Doo-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.119-126
    • /
    • 2005
  • The objective of this paper is to investigate the lining board's capacity for the static load. The test is to inspect the possibility of retrofit and efficiency, which is required to upgrade the structure's capacity and to examine the effects of the improvements of specimen by using structural analysis, and static loading test, respectively. As the result of static loading test for measured stresses and deflections. H type lining board take sufficient load carrying capacity and high stiffness which likes ultimate load, displacement, and bending stresses of intermediate span and top, bottom flange more than 3 times channel type lining board.

Enhancing the static behavior of laminated composite plates using a porous layer

  • Yuan, Yuan;Zhao, Ke;Xu, Kuo
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.763-774
    • /
    • 2019
  • The main aim of this paper is enhancing design of traditional laminated composite plates subjected to static loads. In this regard, this paper suggests embedding a lightweight porous layer in the middle of laminated composite as the core layer of the resulted sandwich plate. The static responses of the suggested structures with uniform, symmetric and non-symmetric porosity distributions are compared to optimize their design. Using the first order shear deformation theories, the static governing equations of the suggested laminated composite plates with a porous layer (LCPPL) rested on two-parameter foundation are obtained. A finite element method is also utilized to solve the governing equations of LCPPLs. Effects of laminated composite and porosity characteristics as well as geometry dimension, edges' boundary conditions and foundation coefficients on the static deflection and stress distribution of the suggested composite plates have been investigated. The results reveal that the use of core between the layers of laminated composites leads to a sharp reduction in the static deflections of LCPPLs. Furthermore, in compare with perfect cores, the use of porous core between the layers of laminated composite plates can offer a considerable reduction in structural weight without a significant difference in their static responses.

Static and dynamic load superposition in spacecraft structural analysis

  • Vaquer-Araujo, Xavier;Schottle, Florian;Kommer, Andreas;Konrad, Werner
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.259-275
    • /
    • 2018
  • In mechanical analysis of spacecraft structures situations appear where static and dynamic loads must be considered simultaneously. This could be necessary either by load definition or preloaded structures. The superposition of these environments has an impact on the load and stress distribution of the analysed structures. However, this superposition cannot be done by adding both load contributions directly. As an example, to compute equivalent Von Mises stresses, the phase information must be taken into account in the stress tensor superposition. Finite Element based frequency response solvers do not allow the calculation of superposed static and dynamic responses. A manual combination of loads in a post-processing task is required. In this paper, procedures for static and harmonic loads superposition are presented and supported by analytical and finite element-based examples. The aim of the paper is to provide evidence of the risks of using different superposition techniques. Real application examples such as preloaded mechanism structures and propulsion system tubing assemblies are provided. This study has been performed by the Structural Engineering department of Airbus Defence and Space GmbH Friedrichshafen.

Structural Optimization of a Joined-Wing Using Equivalent Static Loads (등가정하중을 이용한 접합날개의 구조최적설계)

  • Lee Hyun-Ah;Kim Yong-Il;Park Gyung-Jin;Kang Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.585-594
    • /
    • 2006
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing are joined together in a joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performance and reduction of the structural weight. In this research, dynamic response optimization of a joined-wing is carried out by using equivalent static loads. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. The gust loads are considered as critical loading conditions and they dynamically act on the structure of the aircraft. It is difficult to identify the exact gust load profile. Therefore, the dynamic loads are assumed to be (1-cosine) function. Static response optimization is performed for the two cases. One uses the same design variable definition as dynamic response optimization. The other uses the thicknesses of all elements as design variables. The results are compared.

Study on the Static and Dynamic Structural Analysis Procedure of Excavators (굴삭기의 정적/동적 강도 해석법에 대한 연구)

  • Choung, Joon-Mo;Kim, Gyu-Sung;Jang, Young-Sik;Choe, Ick-Hung;Heo, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.537-543
    • /
    • 2003
  • This paper presents the improved procedure to assess static and dynamic strength of crawler type excavators. A fully integrated model including front attachment and chassis was prepared for structural analysis. In this paper, two types of loading input methods were investigated and the method imposing digging force directly on bucket tooth was more convenient than imposing cylinder reaction force on cylinder pin even if the two methods showed no discrepancy in analysis results. Static strength analysis was carried out for eight analysis scenarios based on two extreme digging positions, maximum digging reach position and maximum digging force positions. The results from static strength analysis were compared with measured stresses, cylinder pressures and digging forces and showed a good quantitative agreement with measured data. Dynamic strength analysis was carried out for simple reciprocation of boom cylinders. It was recognized that the effect of compressive stiffness of hydraulic oil was very important for dynamic structural behavior. The results from dynamic strength analysis including hydraulic oil stiffness were also compared with measured acceleration data and showed a qualitative agreement with measured data.

  • PDF

A Study on the Static/Dynamic Stability for the Structure of a Mill Turret with a B-Axis Tilting Facility (B축 회전 기능을 갖춘 복합공구대 구조물의 정/동적 안정성에 관한 연구)

  • Kang, Seung-Hee;Kim, Chae-Sil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.39-44
    • /
    • 2014
  • Techniques of tool posts are developing such that variable machining is possible using only one machine for the complication of a product's shape and to reduce the machining time. In order to develop a mill turret with a variable machining function with the mounting of mill turret units on a B-axis tilting table, we determine the static/dynamic stability of the structure of the mill turret. To this end, a static structural analysis and a modal analysis were conducted. From the results of the static structural analysis, the maximum stress was found to be less than the allowable stress. By the comparing the results of the modal analysis of the excitation frequencies of the mill turret, there were no resonance regions found. Therefore, the mill turret with the B-axis tilting facility is shown to have good structural integrity.

Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A. (가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계)

  • 최영휴;배병태;강영진;이재윤;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF