• Title/Summary/Keyword: Static Ring

Search Result 113, Processing Time 0.026 seconds

Static Strength of Internally Ring-Stiffened Tubular T-Joints (내부 환보강 T형 관이음부의 정적강도)

  • CHO HYUN-MAN;RYU YEON-SUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.70-78
    • /
    • 2004
  • In order to increase the load carrying capacity of tubular structures, the joints of tubular members are usually reinforced with various reinforcement system. A stiffening method with internal ring stiffeners is effectively used for the steel tubular joint with a large diameter. In this study, the behavior of internally ring-stiffened tubular T-joints subjected to axial loading is assessed. For the parametric study, nonlinear finite element analyses are used to compute the static strength on non-stiffened and ring-stiffened T-joints. Based on the numerical results, an internal ring stiffener is found to be efficient in improving the static strength. The influence of geometric parameters has been determined, and the reinforcement effect are evaluated. Based on the FE results, regression analises are performed considering the practical size of ring stiffener. Finally strength estimation formulas for ring-stiffened tubular T-joints are proposed.

Static Strength of Ring-stiffened Tubular T-joints (내부 환보강 T형 관이음부의 정적강도)

  • Cho, Hyun-Man;Ryu, Yeon-Sun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.145-150
    • /
    • 2002
  • Tubular joints having a large diameter in the offshore structure are reinforced using internal ring stiffener in order to increase the load carrying capacity. In this study, the static strengths of internally ring-stiffened tubular T-joints subjected to compressive brace loading are assessed. Nonlinear finite element analyses are used to compute the behavior of unstiffened and ring-stiffened T-joints. From the numerical results, internal ring stiffener is found to efficient in improving the ultimate capacity, and reinforcement effect are calculated. The influence of geometric parameters for members and ring is evaluated. Based on the FE results, regression analysis is performed considering practical sizes of ring stiffener, finally strength estimation formulae for ring-stiffened T-joints are proposed.

  • PDF

Experimental and theoretical studies on SHS column connection with external stiffening ring under static tension load

  • Rong, Bin;You, Guangchao;Zhang, Ruoyu;Ma, Xu;Quan, Xinxin
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.167-177
    • /
    • 2018
  • In order to investigate mechanical properties in the core area of Square Hollow Section(SHS) column connection with external stiffening ring, four specimens were tested under the static tension load. The failure modes, load-displacement curves and strain distribution were analyzed to study the mechanical properties and the load transfer mechanism of the core area of connections. The connections behave good ductility and load-bearing capacity under the static tension load. Parametric analysis was also conducted, in which the thickness of steel tube, extended width and thickness of the stiffening ring were considered as the parameters to investigate the effects on mechanical properties of the connections. Based on the experimental results, an analytical method for the bearing capacity of connection with external stiffening ring under the static tension load was proposed. The theoretical results and the experimental results are in good agreement, which indicates that the theoretical calculation method of the bearing capacity is advisable.

Numerical Analysis of Moving Type and Static Type Electrodynamic Suspension Simulator with Superconducting Levitation Magnet (초전도 부상자석을 이용한 동적 및 정지형 반발식 자기부상 시험기의 수치해석)

  • Lee, E.R.;Bae, D.K.;Chung, Y.D.;Yoon, Y.S.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator and static type EDS simulator using high-Tc superconducting (HTS) levitation magnet. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible two ways to simulate the EDS system were simulated in this paper by using finite element method (FEM). The first way was the moving type simulator which consists of the fixed HTS magnet and the moving ground conductor. The second way was the static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

Strength Evaluation Formulae for Ring-Stiffened Tubular X-Joints (내부 환보강 X형 관이음부의 강도산정식)

  • 조현만;류연선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.61-68
    • /
    • 2002
  • Tubular members have been applied in a wide range of frame structures including offshore structures. For the efficient load flow in tubular-member structures, the joints of tubular members are usually reinforced using internal ring stiffener for the steel tubular joint having a large diameter. The objective of this paper is to numerically assess the behavior of X-joints with an internal ring stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. From the numerical results, internal ring stiffener is found to be efficient in improving static strength of tubular X-joints. Maximum strength ratios are calculated as 1.5~3.5, and the effective dimensions of ring stiffener are found. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae are proposed.

  • PDF

A Numerical Study on the Static Strength of Tubular X-Joints With an Internal Ring Stiffener (환보강 X형 관이음부의 정적강도에 관한 수치적 연구)

  • Ryu Yeon-Sun;Cho Hyun-Man
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.265-275
    • /
    • 2005
  • The objective of this paper is to numerically assess the behavior of tubular X-joints with an internal ing stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. Numerical and experimental results are in good agreement for tubular X-joints. The chord lengths of simple and ring-stiffened X-joints are suggested to reduce chord end effect. And, internal ring stiffener is found to be efficient In improving static strength of tubular X-joints. Maximum strength ratios are calculated as $1.5\sim3.5$. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae for tubular X-joints with an internal ring stiffener are proposed.

A Study on the Design Parameters of the Static Ring in the Ultra-high Voltage Non-uniform Electric Field (초고압 불평등 전계에서 정전링 설계변수에 대한 연구)

  • Kim, Jin-Sung;Seo, Min-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.577-582
    • /
    • 2020
  • Electricity produced at power plants is distributed to consumers through several stages of substations. At this time, an ultra-high voltage transformer is needed in the initial transmission stage to transmit a voltage suitable for each consumer. A high voltage, non-uniform electric field is formed at the end of the winding of the ultra-high voltage transformer, which carries a risk of dielectric breakdown. The winding of the ultra-high voltage transformer is an electrode, which is the key to converting the magnitude of the voltage. A non-uniform electric field is formed along the shape of the winding end, resulting in high electrical stress. The static ring installed at the upper and lower ends of the winding is used to disperse the stress at the winding end. Several variables should be considered when designing a static ring. Among them, this study examined how the curvature of the static ring, the thickness of the insulating paper, the number of barriers, and barrier thickness affect the electrical stress of the static ring using the Finite Element Method. Suggestions to be considered when designing the static ring are proposed through the FEM results.

Theoretical research of Static Characteristics of Bump Floating Ring Seal (범프 플로팅 링 실의 정특성에 대한 해석적 연구)

  • Kim, Kyoung-Wook;Chung, Jin-Taek;Kim, Chang-Ho;Lee, Young-Bok
    • Tribology and Lubricants
    • /
    • v.24 no.3
    • /
    • pp.140-146
    • /
    • 2008
  • The floating ring seal which is used in the high pressure turbo pump is frequently used in the oxidizer pump and the fuel pump of the turbo pump of the liquid propulsion rocket, because it is able to minimize clearance to decrease the leakage flow rate. But, the floating ring seal has a tendency to increase instability in decreasing eccentricity ratio. To complement this weakness, it is devised bump floating ring seal which is inserted bump in the outer surface. It has various experiment results. But the theoretical study of the bump floating ring seal didn't investigated yet. In this paper, we analyse about static characteristics of bump floating ring seal, compared previous experimental results. To analyze the characteristic of bump floating ring seal, we coupled perturbation method of floating ring seal and FEM of bump foil.

Influence of Ring Gear Boundary Conditions on the Static Characteristics of Epicyclic Gear Trains with Manufacturing Errors (링기어의 경계조건이 가공오차를 가지는 유성기어열의 정특성에 미치는 영향)

  • Cheon, Gill-Jeong;Oh, Jae-Kook
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1775-1780
    • /
    • 2003
  • A hybrid finite element analysis was used to analyze the influence of ring gear rim thickness and spline number on the static properties of an epicyclic gear system with manufacturing errors. Both of these parameters affected the bearing force and critical stress. The effect of changes in the rim thickness on the load sharing between the gears depended on the type of manufacturing error. Ring flexibility improved the load sharing between planetary gears only in systems with planet tooth thickness or planet tangential errors; for other types of error, ring flexibility worsened the load sharing. To improve load sharing, rim thickness and spline number should be controlled within a specific range. The effect of the ring gear boundary condition was more apparent in a system with errors than in a normal system.

  • PDF

Axial Strength Evaluation for Tubular T-Joints with Internal Ring Stiffener (환보강재를 가진 T형 관이음부의 축방향 강도 평가)

  • 조현만;류연선;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.269-276
    • /
    • 2001
  • Tubular structures are widely used for offshore platforms and truss type structures. In this paper, nonlinear finite element analysis is used to assess the static strength of stiffened tubular T-joints subjected to compressive brace loading. This joints was modelled with and without internal ring stiffener According to variation of ring geometries, the effect of ring stiffener for T-joints are investigated. Internal ring stiffener is found to be efficient improving ultimate strength of tubular joints. Relations of ring thickness and axial strength are observed considering geometric parameters of ring stiffeners.

  • PDF